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ABSTRACT 
 
In this paper, we present an approach for crowd detection based on an ensemble of classifiers which 
employ several feature representation schemes of crowd images, including, local ternary patterns, 
local binary patterns, and features based on the spatial gray level dependency matrix. A Support 
Vector Machine classifier is trained on each of these feature vectors. Classifier predictions are then 
combined by sum rule. Experiments are performed on a large dataset that contains challenging 
sequences of actual football matches recorded at a stadium arena. Experimental results confirm that 
the different feature representations give complementary information which is exploited by fusion 
rules. The method proposed in this paper is shown to outperform previous methods tested on the 
same dataset. MATLAB code using the different descriptors is available at http://www.dei. 
unipd.it/wdyn/?IDsezione=3314&IDgruppo_pass=124&preview=". 

 
Keywords: crowd detection, local ternary patterns, spatial gray level dependency matrix, local 
binary patterns. 
 

1. INTRODUCTION 
 
Video surveillance is an active area of research. Technology has reached the stage where mounting 
cameras is cheap. Cities throughout the world continue to amass extensive networks of camera 
surveillance systems. This has led to something of a monitoring crisis. Despite the ample volume of 
available video data, little accountable information is being retrieved. Human monitoring is tiring, 
expensive, and ineffective. It is estimated, for instance, that monitoring 25 cameras 24/7 costs an 
average of $150K per year, and experiments at Sandia National Laboratories for the US Department 
of Energy showed that human attention to video monitors deteriorates to unacceptable levels after 
only 20 minutes of viewing [11]. A practical solution would automate the monitoring process, 
freeing personnel to further evaluate and respond to detected events. Some key technologies 
motivating research along these lines include video-based detection and tracking, video-based 
person identification, and large-scale surveillance systems [16]. The desirability of such research is 
reflected in governmental funding, such as the EU Chromatica and Prismatical programs, the U.S. 
Combat Zones [5] project, and the older U.S. program VSAM (Video Surveillance and Monitoring) 
[4] [18], which greatly promoted research in these areas as they relate to both the battlefield and the 
commercial sector [26] [13] [15].  

 
A number of computer vision technologies that deal with automated video surveillance have also 
recently found significant commercial success [20] [28]. Much of the focus of this technology has 
been on building physical security applications, but other issues being addressed involve event 
detection and face recognition at a distance. Yet, despite the many recent advances, these state-of-
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the-art systems tend to fail at critical points when the environmental assumptions on which they 
were built no longer apply. One common environmental change that often results in system failure 
is crowding. Isolating events and actors in crowds is complicated by such things as background 
motion [19] and high levels of occlusion where only a small portion of the human shape is visible 
[30]. 
 
 In recent years, algorithms for crowd detection have been gaining strong interest. There are several 
reasons motivating this research. Crowded environments are very difficult to monitor by human 
observers, whether live or via video surveillance, because the visual patterns are highly repetitive 
and the complexity of the movement characterizing the scene is often overwhelming. Moreover, 
crowds can form and grow quickly and unexpectedly turn violent. Crowd detection systems and the 
automated analysis of higher level crowd characteristics, such as crowd configuration [2], flow [29], 
and violence [14], hold out the promise of offering invaluable assistance to safety personnel in 
targeting areas of emerging threat. Crowd algorithms are also valuable because they enable 
intelligent video surveillance systems to analyze a wider range of scenarios, extending outside 
common intrusion detection and patrolling tasks [10], and crowd detection algorithms work well 
with existing camera networks, as the perimeter defining a crowd often spans distances lying 
outside the range of a single camera. Crowd detection is especially important in the context of 
intelligent and automated video surveillance systems intended for large venues and public events, 
such as football games and concerts, as well as for such common environments as city streets and 
underground train stations during peak hours. 
 
The development of crowd detection algorithms is rather recent. One of the earliest works 
describing a system for detecting a crowd dates in the mid 90s [7]. In that early paper, the authors 
provided a high level description of crowds inspired by gas dynamics along with a low level 
machine vision solution. Other approaches developed over the years include methods based on 
motion analysis and texture analysis. In [23], for example, a motion based system is proposed that 
assumes particles are evenly spaced; these are then displaced according to optical flow. In [17], 
motion heat maps, together with a set of indicators for measuring motion entropy, are used to detect 
crowds. Finally, in [2], a motion-based system is proposed that detects the precise contours of a 
crowd from still images. 

 
Texture analysis works especially well when the task is focused on measuring the entropy of an 
image rather than on finding objects characterized by precise shapes that can be geometrically 
described. In crowd detection, the main approach used in texture-based methods is based on 
evaluating the gray level dependency matrix (GLDM), a method of feature representation that dates 
back to the 1970s [12]. This feature set is very large. However, in algorithms using it for crowd 
detection, only a few features are retained. In [22], for example, four features (labeled contrast, 
homogeneity, energy, and entropy) are used as the inputs for a neural network that classifies crowd 
density. In [10], a novel set of features based on GLDM are proposed that provide a richer 
description of the co-occurrence matrix for analyzing smaller segments of images.  Aside from 
GLDM, other systems have used the Histogram of Oriented Gradients (HOG) descriptor [9] and 
SIFT feature density [2]. Finally, of note is [21], where a number of texture-based methods are 
compared and evaluated for crowd detection. 

 
In this paper, we present a novel texture-based approach for crowd detection using an ensemble of 
classifiers that employ several descriptors, or feature representation schemes, of crowd images, 
including, local ternary patterns (LTP), local binary patterns (LBP), and a feature set based on 
GLDM. A Support Vector Machine classifier is trained on each of these feature vectors. Classifier 
predictions are then combined by sum rule. Experiments are performed on a large dataset that 
contains challenging sequences recorded during real football matches at a stadium arena. In our 

2013 Northeast Decision Sciences Institute Annual Meeting Proceedings      April 2013 Page 537



experiments, a fusion approach obtains the best average result. Our experiments demonstrate that it 
is possible to develop crowd detection systems composed of different simple methods that perform 
competitively with more complex state-of-the-art systems. This is useful since combining n 
independent approaches lends itself easily to parallelization (for instance, a different descriptor can 
be given to each core in a system with a multicore processor) making the system suitable for real 
time applications without the need for hardcode optimization. 

 
The remainder of this paper is organized as follows. In section 2, we provide a detailed description 
of the texture descriptors used in our experiments. In section 3, we outline and explain our proposed 
approach. In section 4, we describe the dataset and several experimental results for validating our 
approach. Finally, in section 4, we summarize our results and give suggestions for further research. 

2. TEXTURE DESCRIPTORS 
 

Automated crowd localization and classification is a difficult machine classification problem that 
we believe is best handled by combining multiple descriptors to boost performance. Good 
descriptors are invariant to image rotation and scale. In addition, they are robust in terms of 
variations in illumination. By combining descriptors, a system can utilize the best properties of 
each. The remainder of this section describes the various texture descriptors used in our proposed 
ensemble method.  

 
2.1 Invariant Local Binary Patterns (LBP) [24] 
 
LBP is an extensively studied local texture operator that possesses several excellent properties: low 
computational complexity, rotation invariance, and robustness in terms of illumination variations. 
LBP is a histogram that is based on a statistical operator that is calculated by examining the joint 
distribution of gray scale values of a circularly symmetric neighbor set of P pixels around a pixel x 
on a circle of radius R. In this study we use a multiresolution descriptor that is obtained by 
concatenating two histograms calculated using the uniform bins with the following parameters:  
(P=8; R=1) and (P=16; R=2). 

 
2.2 Local Ternary Patterns (LTP) [27] 
 
A generalization of LBP is LTP, which represents gray-scale differences between the pixels using a 
ternary rather than a binary value. The difference between the gray value of a pixel x from the gray 
values in one of its neighborhood u is represented by three values, which are determined by the 
application of the threshold τ : 1 if u ≥ x + τ ; -1 if u ≤ x – τ ; else 0. This provides a more 
discriminant descriptor that is also less sensitive to noise. To reduce computational complexity, the 
ternary pattern is divided into two binary patterns by considering both the positive and the negative 
components. The histograms computed from these two patterns are then concatenated. In our 
system, two different parameter configurations are evaluated: (P=8; R=1) and (P=16; R=2).  

 
2.3 Histogram of oriented gradients (HOG) [6] 
 
HOG calculates intensity gradients from pixel to pixel and selects a corresponding histogram bin for 
each pixel based on the gradient direction. The HOG features extracted in our experiments use a 
2×2 version of the HOG. The HOG features were extracted on a regular grid at steps of 8 pixels and 
stacked together considering sets of 2×2 neighbors to form a longer descriptor with more 
descriptive power.  
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2.4 Haralick texture features [12] 
 
The Haralick texture features descriptor was proposed nearly 30 years ago to classify different 
categories of rock, but it is widely used today to classify many types of images. It is based on the 
SGLD, or the co-occurrence matrix.  

 
Given an image with N gray levels, the SGLD matrix at angle θ is a matrix of size N×N. Each 
element in the matrix is a count of the total number of pairs of gray levels i and j at a distance d 
along the direction θ. 

 
Thirteen features are calculated from a SGLD matrix at a fixed angle θ: energy, correlation, inertia, 
entropy, inverse difference moment, sum average, sum variance, sum entropy, difference average, 
difference variance, difference entropy, and two information measures of correlation (Implemented 
as in Haralick Texture Features Matlab Toolbox v0.1b www.bme.utexas.edu/reasearch/informatics). 
In this work we test the features set extracted using Haralick’s method, which concatenates the 
features extracted by considering four angles (0°, 45°, 135° and 90°), with d=1. 

 
2.5 Shape analysis [10] 
 
The SGLD is capable of measuring texture by analyzing the transitions (i.e., the differences 
between the gray levels) between couples of pixels, and organizing them to form a histogram. 
Deeper studies reveal that this matrix contains a great deal of information that is only partially 
extracted by features commonly used in the literature [10]. For this reason, it is worth investigating 
novel features and methods in order to extract more information in a given framed scene. 

 
The SGLD can be seen as a two-dimensional histogram that is created by setting up a grid of 256 x 
256 locations (in the common case of 8-bit image depth), one for each grayscale value. Once the 
whole image has been scanned and each pixel couple considered, the SGLD represents how pixels 
change. If only smooth variations can be found in the image, the SGLD will be concentrated 
towards the diagonal, while abrupt changes will lead to peaks that have a certain distance from the 
diagonal. Information about where such transitions occur, however, is lost, since all contributions 
are summed up irrespective of the region they were observed. 

 
To obtain a better characterization of SGLD, a set of new features was developed in [10], with the 
idea of describing the shape of the histogram in more detail. From a detailed shape description, it is 
then possible to obtain much more data than that provided by commonly used indicators.  

 
One way to extract more information is to analyze the 3D shape of the histogram by considering 
several height values. Each level curve is then analyzed by approximating it with an ellipse. On 
each ellipse a number of parameters are measured, and, finally, the amount these parameters change 
over the different ellipses is measured. This leads to a number of useful indicators, the first one 
being the decrease of the axes of the ellipses, and how it fits with a linear model. The maximum and 
minimum of the axes is also valuable. Yet another parameter of interest measures the volume under 
the highest contour level, with its dual parameter (the volume of the SGLD over the same contour 
level) also considered. A further important parameter is the eccentricity of the ellipses, which 
measures the amount of strong pixel variations: an ellipse which is thin around the main diagonal 
indicates that the number of strong variations is negligible, and vice-versa. Further parameters that 
we consider in this work are the surface of the smallest ellipse that describes how smooth the upper 
part of the SGLD is, and its ratio with the widest ellipse. Finally, the number of SGLD locations 
that have zero height is measured. 
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3. PROPOSED APPROACH  
 

In this paper we not only combine different texture descriptors but also different color constancy 
approaches (the color constancy approaches estimate the unknown light of a scene and try to 
normalize it to a standard light) as well as the contrast limited adaptive histogram equalization1 
(AH), using the function adapthisteq.m in MATLAB 7, as a preprocessing method to reduce the 
illumination problem [8]. The following color constancy approaches are tested: Grey-World (GW), 
max-RGB (MR), Shades of Grey (SG), and Grey-Edge (GE). 

 
The system we propose in this paper classifies a given image in a given crowd density into two 
categories: no crowd and low (where less than 4 persons appear in an image) and med and high 
crowd (where 4 or more persons appear in the image). The number of persons in each image in our 
database was manually tabulated, and each image was labeled accordingly. Experiments were then 
performed that combined the different descriptors using the sum rule. In Table 1 we list the features 
tested in this paper. 

 
 

 
 
 
 
 
 

Table 1. Descriptors used in the proposed system. 
 

The original video resolution was set to 640 × 480 pixels (for more details on the dataset, see 
section 4.1). In our system, the images were divided into either four or sixteen regions. As seen in 
section 4, the performance of our best ensemble depends on how the full image is divided. 
Moreover, whereas the best stand-alone descriptor in both cases is LTP, the other approaches 
perform quite differently in the two cases. 
 
4. EXPERIMENTAL RESULTS  
 
The dataset chosen for training and testing the classifier was acquired in a small stadium during a 
football match. Inside the stadium, a number of Pan-Tilt-Zoom (PTZ) cameras, capable of framing 
every part of the venue, was installed. A subset of four cameras installed in different positions (one 
framing outside the venue) was then chosen as a source for the recordings, which started one hour 
before the match was scheduled to begin and ended half an hour after the match ended. The 
recorded images are the same images that the security officers observed while keeping the venue 
under control. In this way, we are assured the images include salient events since the actions of 
security professionals (they controlled the tilt/pan/zoom mechanisms of the cameras) determined 
which scenes were recorded. 

 
Recorded sequences include scenes in which the public or the game appear alone, scenes where 
both are present in the same image, and other scenes that include people queuing up at a kiosk 
during the game break. Flows of people getting into and out of the stadium are also present, as well 
as scenes of the empty venue, which were useful for providing the classifier system some negative 
examples with high texture content.  

1 Function adapthisteq.m of the MATLAB 7 

Descriptor Short name Dimension 
Local Ternary Pattern LTP 604 
Local Binary pattern LBP 302 
Haralick texture features  HAR 52 
Histogram of gradients HOG 81 
Shape analysis SA 36 
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Unlike scenes framed by surveillance cameras in other environments, images taken in stadium 
environments have peculiarities that justify our choice of acquiring a new dataset instead of 
exploiting others already available, such as the one presented in [1]. Despite the large number of 
images that can be acquired in stadium environments, the framed scenes are highly repetitive. As a 
result, the number of different scene conditions is strongly reduced. This reduction is mainly due to 
the fact that security officers tend to leave cameras in the same position for extended periods of 
time and the fact that people infrequently move while intent on watching a game. Moreover, the 
public normally looks similar even when framed from different viewpoints. However, there are 
times when the natural light can shift dramatically during the course of recording, making the same 
scene appear very different.  
 
Out of all the recordings, 901 frames were chosen to best represent all possible scenarios that were 
observed during the match (see Figure 1 and 2, for examples). The frames were then organized into 
19 short subsequences. It should be noted that the sequences for training and testing the classifiers 
were revised in this paper with respect to what was done in [10]. In this work, special care was 
spent in assuring that the training and testing sets did not include sequences taken from the same 
camera with the same orientation (thus simulating a real application scenario). This choice lead to a 
harder test for the classifier generalization capabilities, and justifies the lower performance obtained 
by the system described here with respect to [10]. 
 

 
Figure 1. A typical image acquired inside a large venue.  

The crowd is not the only framed entity providing high texture content. 
 

 
Figure 2. Crowd can be observed from different scales in the same frame.  

Other objects with strong texture content are also present in the image. 
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4.2 Experiments 
 
The area under the Receiver Operating Characteristic curve (AUC) is used as the performance 
indicator. The area under the ROC is considered one of the most reliable performance indicators 
[25] as it is based on both sensitivity and specificity.  The ROC curve is a plot of the sensitivity 
versus false positives (1 - specificity). The error area under the ROC curve (EUC) can be 
interpreted as the probability that the classifier will assign a lower score to a randomly chosen 
positive sample than to a randomly chosen negative sample.  

 
As the testing protocol, we used the leave-one-out cross-validation method, where in each fold the 
frames of a given sequence are used as a testing set, while the other frames of the other eighteen 
sequences are used to build the training set. 

 
Table 2 reports the results in the first experiment, where we compare the different pre-processing 
approaches (adaptive histogram equalization and the four color constancy approaches) using the 
most widely used descriptor for person identification, namely, the HOG descriptor. The label NO is 
the performance obtained when no preprocessing approach is applied. 

 
Pre-Processing 4 regions 16 regions 
NO 67.38 77.30 
AH 76.02 81.27 
GW 68.02 77.41 
MR 68.13 77.15 
SG 68.75 77.50 
GE 76.24 77.94 

 
Table 2. Accuracy obtained using different feature sets. 

 
As can be seen in Table 2, it is clear that color constancy has little impact, while the application of 
adaptive histogram equalization (AH) improves performance. 
 

Pre-Processing 4 regions 16 regions 
HOG 76.0 81.3 
HARA 60.4 82.5 
LTP 82.4 93.0 
LBP 75.1 91.9 
SA 73.1 72.2 
FUS_4 83.2 92.5 
FUS_16 81.8 93.2 
FUS 82.5 93.1 

 
Table 3. Comparison among different approaches. 

 
In table 3 we compare the descriptors (preprocessed by AH) described in section 2. We also report 
the following fusion approaches: 

• FUS_4 is the weighted fusion between HOG (weight 1) and LTP (weight 4); it obtains the 
best performance in the 4 regions testing protocol; 

• FUS_16 is the weighted fusion between LBP (weight 1) and LTP (weight 3); it obtains the 
best performance in the 16 regions testing protocol; 
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• FUS is the weighted fusion of HOG (weight 1), LBP (weight 2), and LTP (weight 6). 
 

The following conclusions can be drawn from the results reported in Table 3: 
• LTP outperforms the other approaches; 
• LBP obtains performance similar to LTP in the 16 regions set (outperforming the other 

tested descriptors), while in the 4 regions set it obtains a performance similar to SA and 
HOG; 

• The fusions are quite useful but perform differently than they do in other problem domains 
(e.g., image sub-cellular classification [3]); it does not enhance the performance of the best 
single descriptor. 

 
In Figure 3 we report an example where only one subwindow (surrounded by a black frame) is 
misclassified by our proposed method. Notice that the misclassified example contains three persons, 
so it is quite similar to the class “med and high crowd” that is composed by the images containing 
four or more persons. 

  

 
Figure 3. Example classified best by our system. 

 

5. CONCLUSION 
 
This paper focused on the study of texture descriptors for training an ensemble of machine learning 
algorithms for crowd image classification. The system proposed in this work is tested on a difficult 
dataset built using video sequences of real football matches at a local stadium arena. We performed 
several tests using sequences extracted from different cameras using two different testing protocols 
based on the original images, size 640×480, being divided into either four or sixteen regions. In the 
first protocol, the systems are trained and tested with the full image divided into four regions; in the 
second protocol the systems are trained and tested with the full image divided into sixteen regions. 

 
Based on an analysis of prior research in other domains, we propose a method for automating crowd 
localization based on a set of SVMs trained using different descriptors. For combining the different 
descriptors, we train a SVM separately for each descriptor with the results combined using a 
weighted sum rule. It is interesting to note that the behavior of the each approach changes 
depending on the two different testing protocols. 

 
In future work we plan on improving the performance of our system by evaluating other texture 
descriptors and different methods for combining ensemble evaluations. Moreover, since the images 
are acquired by cameras that are rarely moved, it may also be possible to develop an approach based 
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on background subtraction. Our idea is that the model for the background could be rebuilt after 
every camera motion. 
 

REFERENCES 
 
[1] Ali, S., and Shah, M., “A lagrangian particle dynamics approach for crowd flow segmentation 

and stability analysis,” in IEEE International Conference on Computer Vision and Pattern 
Recognition (CVPR), 2007. 

[2] Arandjelovic, O., “Crowd detection from still images,” in British Machine Vision Conference 
(BMVC), 2008. 

[3] Chebira, A., Barbotin, Y., Jackson, C., Merryman, T., Srinivasa, G., Murphy, R. F., and J., J. 
K., “A multiresolution approach to automated classification of protein subcellular location 
images,” BMC Bioinformatics, vol. 8, pp. 210, 2007. 

[4] Collins, R., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., 
Enomoto, N., Hasegawa, O., Burt, P., and Wixson, L., A system for video surveillance and 
monitoring, The Robotics Institute, Carnegie Mellon University, Pittsburgh PA, 2000. 

[5] Combat Zones That See U.S. Government DARPA Project. 
[6] Dalal, N., and Triggs, B., “Histograms of oriented gradients for human detection,” in 9th 

European Conference on Computer Vision, San Diego, CA, 2005. 
[7] Davies, A. C., Yin, J. H., and Velastin, S. A., “Crowd monitoring using image processing,” 

Electronics Communication Engineering Journal, vol. 7, no. 1, pp. 37-47, 1995. 
[8] Eustice, R., Pizarro, O., Singh, H., and Howland, J., “UWIT: Underwater image toolbox for 

optical image processing and mosaicking in MATLAB,” in International Symposium on 
Underwater Technology, Tokyo, Japan, 2002, pp. 141-145. 

[9] Gárate, C., Bilinsky, P., and Bremond, F., “Crowd event recognition using hog tracker,” in 
Twelfth IEEE International Workshop on Performance Evaluation of Tracking and 
Surveillance (PETS-Winter), 2009, pp. 1-6. 

[10] Ghidoni, S., Cielniak, G., and Menegatti, E., “Texture-based crowd detection and 
localisation,” in International Conference on Intelligent Autonomous Systems (IAS-12), 2012. 

[11] Haering, N., Venetianer, P. L., and Lipton, A., “The evolution of video surveillance: An 
overview,” Machine Vision and Applications, vol. 19, pp. 279–290, 2008. 

[12] Haralick, R. M., “Statistical and structural approaches to texture,” Proceedings of the IEEE, 
vol. 67, no. 5, pp. 786-804, 1979. 

[13] Haritaoglu, I., Harwood, D., and Davis, L., “Real time surveillance of people and their 
activities,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, 
pp. 809–830, 2000. 

[14] Hassner, T., Itcher, Y., and Kliper-Gross, O., “Violent flows: Real-time detection of violent 
crowd behavior,” in IEEE Conference on Computer Vision and Pattern Recognition 
Workshops (CVPRW), 2012, pp. 1-6. 

[15] Horprasert, T., Harwood, D., and Davis, L., “A statistical approach for real-time robust 
background subtraction and shadow detectio,” in IEEE Frame-Rate Workshop, Kerkyra, 
Greece, 1999. 

[16] Hu, W., Tan, T., Wang, L., and Maybank, S., “ A survey on visual surveillance of object 
motion and behaviors,” IEEE Transactions on Systems, Man, and Cybernetics Part C, vol. 34, 
no. 3, pp. 334-352, 2004. 

[17] Ihaddadene, N., and Djeraba, C., “Real-time crowd motion analysis,” in 19th International 
Conference on Pattern Recognition (ICPR 2008), 2008, pp. 1-4. 

[18] Kanade, T., Collins, R., Lipton, A., Anandan, P., and Burt., P., “Cooperative multisensor 
video surveillance,” in 1997 DARPA Image Understanding Workshop, 1997, pp. 3-10. 

2013 Northeast Decision Sciences Institute Annual Meeting Proceedings      April 2013 Page 544



[19] Ke, Y., Sukthankar, R., and Hebert, M., “Volumetric features for video event detection,” 
International Journal of Computer Vision, vol. 88, no. 3, pp. 339-362, 2010. 

[20] Lipton, A., Heartwell, C., Haering, N., and Madden, D., “Automated video protection, 
monitoring & detection,” IEEE Aerospace and Electronic Systems Magazine, vol. 18, no. 5, 
pp. 3-18, 2003. 

[21] Marana, A. N., Costa, L. F., Lotufo, R. A., and Velastin, S. A., “On the efficacy of texture 
analysis for crowd monitoring,” in International Symposium on Computer Graphics, Image 
Processing, and Vision (SIBGRAPI ’98), 1998, pp. 354-361. 

[22] Marana, A. N., Velastin, S. A., Costa, L. F., and Lotufo, R. A., “Estimation of crowd density 
using image processing,” Image Processing for Security Applications, no. Digest no.: 
1997/074, pp. 11/1–11/8, 1997. 

[23] Mehran, R., Oyama, A., and Shah, M., “Abnormal crowd behavior detection using social 
force model,” in IEEE Computer Vision and Pattern Recognition (CVPR 2009), 2009, pp. 
935-942. 

[24] Ojala, T., Pietikainen, M., and Maeenpaa, T., “Multiresolution gray-scale and rotation 
invariant texture classification with local binary patterns,” Ieee transactions on pattern 
analysis and machine intelligence, vol. 24, no. 7, pp. 971-987, 2002. 

[25] Qin, Z. C., “ROC analysis for predictions made by probabilistic classifiers,” in Fourth 
International Conference on Machine Learning and Cybernetics, 2006, pp. 3119-312. 

[26] Stauffer, G., “Learning patterns of activity using real-time tracking,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747-757, 2000. 

[27] Tan, X., and Triggs, B., “Enhanced local texture feature sets for face recognition under 
difficult lighting conditions,” Analysis and Modelling of Faces and Gestures, vol. LNCS 
4778, pp. 168-182, 2007. 

[28] Tian, Y.-l., Brown, L., ·, A. H., Lu, M., Senior, A., and Shu, C.-f., “IBM smart surveillance 
system (S3): event based video surveillance system with an open and extensible framework,” 
Machine Vision and Applications, vol. 19, pp. 315-327, 2008. 

[29] Wang, B., Ye, M., Li, X., Zhao, F., and Ding, J., “Abnormal crowd behavior detection using 
high-frequency and spatio-temporal features,” Machine Vision & Applications, vol. 23, no. 3, 
pp. 501-511, 2012. 

[30] Zhan, B., Monekosso, D. N., Remagnino, P., Velastin, S. A., and Xu, L.-Q., “Crowd analysis: 
A survey,” Machine Vision and Applications, vol. 19, pp. 5-6, 2008. 

 
 

2013 Northeast Decision Sciences Institute Annual Meeting Proceedings      April 2013 Page 545




