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ABSTRACT 
 
Missing values are ubiquitous in real-world datasets. In this work, we show how to handle them 
with heterogeneous ensembles of classifiers that outperform state-of-the-art solutions. Several 
approaches are compared using several different datasets. Some state-of-the-art classifiers, e.g., 
SVM and RotBoost, are tested first and coupled with the Expectation-Maximization (EM) 
imputation method. The classifiers are then combined to build ensembles. Using the Wilcoxon 
signed-rank test (reject the null hypothesis, level of significance 0.05), we show that our best 
heterogeneous ensembles, obtained by combining a forest of decision trees (a method that does not 
require any dataset-specific tuning) with a cluster-based imputation method, outperforms two 
dataset-tuned solutions: a stand-alone SVM classifier and a random subspace of SVMs, both based 
on LibSVM, the most widely used SVM toolbox in the world. Our heterogeneous ensembles also 
exhibit better performance than a recent cluster-based imputation method for handling missing 
values (a method which has been shown to outperform several other state-of-the-art imputation 
approaches) when both the training set and the testing set contain 10% missing values. The 
MATLAB code of several tested descriptors, along with the datasets used in our experiments, is 
available at http://www.dei.unipd.it/wdyn/?IDsezione=3314&IDgruppo_pass=124& preview=. 
 
Keywords: missing values; imputation methods; support vector machine; decision tree; ensemble 
of classifiers. 

1. INTRODUCTION 
Whether in business or in other domains, real data are rarely perfect. In most cases they are 
incomplete, vague, and inaccurate: survey questions are riddled with random or missing answers, 
images are often out of focus, sensors fail, and equipment malfunctions. These and other 
circumstances, such as extreme noise and accidental deletions and errors, can introduce values in 
datasets that bias estimation and prediction [24].  
 
Of the various problems encountered in data sources, missing data is one of the most common [17]. 
Methods for handling missing values depend on the severity of the problem. In general, a missing 
data rate lower than 1% is not significant, while rates between 1% and 5% are considered 
manageable. Missing data rates between 5% and 15%, however, require sophisticated imputation 
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methods for treating the missing values, and rates greater than 15% are generally considered to have 
a severe impact on results. Missing values can be measured in the simplest case by searching for 
null values, but there are other forms of missing values that are more difficult to detect, such as 
outliers and values that that lie outside predetermined ranges [22].  

 
Missing values are particularly problematic when working with machine learning algorithms. In 
neural networks and K-Nearest neighbor algorithms, for instance, missing values can result in 
variance underestimation, distribution distortion, and correlation depression. In some cases, the 
algorithms are unable to handle missing data. Unfortunately, the most common method for dealing 
with the problem in machine learning is essentially to ignore it [13] by using a technique commonly 
referred to as “filtering.” This method for handling missing values works sufficiently well when 
missing data rates are below 5%, but becomes increasingly unsatisfactory when rates are higher. In 
some application areas, e.g., in epistatic miniarray profiling (E-MAP) [21], which is used for the 
analysis of genetic-interaction maps in the form of symmetric matrices, missing data rates can 
exceed 30%. In this case, discarding all genes that contain missing values would result in removing 
more than 90% of the data in the E-MAP matrix. Filtering in these cases greatly compromises the 
value of such studies.  

 
In cases where missing values exceed 5%, there are a number of statistical models that could be 
used to assess the impact of missing values and to determine the best imputation method for 
treatment. According to Little and Rubin [17], models of missing data randomness can be divided 
into three classes: MCAR (Missing Completely At Random), where the probability for a random 
variable X is independent of the actual value of X or the values of the other features; 2) MAR 
(Missing At Random), where the missing probability is independent of the value of X after 
controlling the other features; and 3) NMAR (Not Missing At Random), where the probability that 
X is missing might depend on the value of X itself. MCAR is usually the model of choice, but in 
many real-world applications MAR is a more realistic assumption [18].  

 
Typical methods for data imputation essentially replace a missing value with one which has the 
greatest similarity to others in the dataset, as in hot-deck imputation [11], where new values for a 
feature are computed as the mean of that feature across the training set or across k-nearest 
neighbors. Robust statistical approaches have also been developed. A popular choice is multiple 
imputation (MI) [26], which replaces missing values by their m > 1 simulated versions (m typically 
small). Each of the simulated datasets is analyzed using standard methods, and the results are 
combined to produce estimates and confidence intervals that incorporate the uncertainty introduced 
by the missing data. For recent surveys on imputation methods, see [6] [23] [8]. 
  
The last ten years have witnessed the development of powerful machine learning imputation 
methods that fill in missing values by constructing a predictive model to estimate the values that are 
lacking from information in the dataset. These investigations have examined the application of 
some well-known stand-alone classifiers, such as the Multi-Layer Perceptron (MLP), K-nearest 
neighbors (KNN), self-organizing maps (SOM) and decision trees (DT) [28]. Bayesian networks 
have also produced some good results [9] [12]. In [12], for example, two Bayesian methods for 
imputation are proposed that are based on the construction of Bayesian networks for each feature 
with missing values. 

 
A number of excellent studies of various imputation methods compared with or combined with 
machine learning algorithms have also recently appeared. In [28] single imputation, likelihood-
based multiple imputation (MI), probabilistic split, and surrogate split are compared for coping with 
missing values in decision trees. Using real datasets, comparisons show MI to be the top performer. 
In [4], an iterative boosting method is proposed for improving the quality of the imputed features, 
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and, in [5], the same authors investigate the influence of imputation on classification error for five 
methods. These studies conclude that imputation is usually beneficial for the classification of 
instances with missing values. In [7], a comparison of imputation methods that includes some 
commercial methods for MI (such as Amelia II, WinMICE, and SAS) reports that only machine 
learning algorithms (the study considers three: MLP, KNN and SOM) significantly improves the 
classification results in the presence of missing values. Moreover, all three machine learning 
algorithms are shown to perform equally well. 

 
A slightly different machine learning solution is proposed in [23], which investigates a novel 
random subspace (RS) approach dubbed Learn++.MF. This approach makes two assumptions: 1) 
the feature set is partially redundant and 2) the redundancy is distributed randomly over the feature 
set. Learn++.MF is based on the distribution update concepts of Learn++, with the random feature 
selection of RS. When an instance with missing values is introduced, only those classifiers trained 
with the features that are presently available in that test pattern are used for classification. In their 
study, the authors compare Learn++.MF with the one-class approach [14], the expectation-
maximization (EM) approach [27], and another RS-based approach where the mean imputation is 
used for the missing values before the RS ensemble classification. They show that Learn++.MF 
outperforms these other methods across several datasets. 

 
In this work, EM is used as the base imputation method, and we boost performance in the presence 
of missing values using a heterogeneous ensemble built on SVM classifiers as well as other 
ensembles. We compare our ensemble approach with other state-of-the-art classification methods 
using several datasets. Our best approach outperforms both a stand-alone SVM (even when the 
SVM kernel and the various SVM parameters are carefully fine-tuned for each dataset) and a 
recently-proposed ensemble [20], which has already been shown to outperform several other state-
of-the-art methods for handling missing values. 

2. PROPOSED APPROACH 
 
The heterogeneous ensembles we propose are based on the fusion by sum rule [15] of different 
state-of-the-art classifiers, which in turn may be ensembles of classifiers themselves (e.g., a random 
subspace of RotBoost). In our opinion, the main value of such ensembles of ensembles is that they 
offer the most feasible way of coping with the “no free lunch” theorems, which state that any two 
optimization algorithms in a suitable class exhibit the same performance when results are averaged 
across all possible problem sets (see, e.g., [29]). In other words, heterogeneous ensembles may be 
one of the best performing methods across various classification problems in the presence of 
missing values. Different ensembles are tested in this paper. In the remainder of this section, we 
describe the building blocks composing these ensembles. 

 
2.1 Expectation-Maximization (EM) 1 

 
EM [27], first proposed in 1977 [2], is an iterative method for parameter estimation that uses 
maximum likelihood criteria. In this work we use EM as the core method to fill in missing values 
before training the classifiers in our ensembles.  
 
EM formalizes an intuitive method to manage missing values and can be outlined as follows: 

1. Estimate initial parameters using complete data. 
2. Use parameters to estimate and evaluate missing data. 

1 Details and MATLAB code: http://www.gps.caltech.edu/~tapio/imputation/ (accessed: 18 October 2012). 
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3. Use the new estimated data to reevaluate parameters. 
4. Repeat steps 2 and 3 until convergence. 

 
Formally, let a dataset, given as a data matrix 𝐗 ∈ 𝑅𝑛×𝑝 with n patterns and p features, contain 
some rows (patterns) with missing values. For each pattern 𝑥𝑖 let a be the portion of the row for 
which values are available (𝑝𝑎 columns) and m the portion where values are missing (𝑝𝑚 = 𝑝 − 𝑝𝑎 
columns). Let us define μ and Σ as the mean and the covariance matrices of the dataset, which are 
correspondingly partitioned between available and missing values for a given row. The goal of EM 
is to replace the missing values with values that are consistent with the available data. The missing 
values are assumed to be randomly scattered according to a normal distribution.  

 
For each row 𝑥𝑖 the relation between the available and the missing portions is modeled by a linear 
regression: 
 𝐱𝑚 − 𝛍𝑚 = (𝐱𝑎 − 𝛍𝑎)𝐁 + 𝑒, EQ. 1 
 

                             
where e is the imputation error, with zero mean and unknown covariance matrix C, and B is the 
regression coefficients matrix. EM estimates μ, Σ, 𝐁 , and C (for details see [27]). Using the 
estimated parameters, the missing values are filled in and new estimates of μ and Σ are calculated. 
The whole process is repeated until values for estimated data are stable. 

 
2.2 Random Subspace (RS) 

 
RS [10] is an ensemble combining technique that is used in some our ensemble experiments.  
Consider a training set X formed by n vectors 𝐱𝑖 = �𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝� with p features each. RS 
randomly selects r < p features from the original feature space and creates a new training set 𝐗r. 
Each vector 𝐱𝑖 ∈ 𝐗r is thus r-dimensional. A classifier is built using the new training set 𝐗r, i.e., 
using a reduced feature space. This process is repeated b times, so that b random feature subsets and 
b classifiers are created. The final classification is obtained by combining the scores of the b 
classifiers.  
 
An outline of the RS algorithm is the following: 

1. For i=1 to b do: 
a. Select an r-dimensional random subspace 𝐗r 

from the original p-dimensional feature space 
b. Train a classifier 𝐶𝑖(𝑥) on 𝐗𝑟 

Endfor 
2. Combine classifiers 𝐶𝑖(𝑥) 𝑖 = 1, … , 𝑏 by a simple combination method. The sum 

rule is used in this paper:  
 

𝑠𝑐𝑜𝑟𝑒𝑅𝑆𝑀 =
1
𝑏
�𝑠𝑐𝑜𝑟𝑒𝐶𝑖(𝑥)
𝑖

 
 

EQ. 2 

 
                                                 

2.3 Support Vector Machine (SVM) 
 

SVM [1] is a linear binary classifier. In our work we use SVMs as core classifiers in several of our 
ensembles. An SVM performs classification by cutting the n-dimensional space, with n being the 
number of features, into two regions associated with two distinct classes which are often referred to 
as the positive class and the negative class. The regions are separated by an n-dimensional 
hyperplane that has the largest possible distance d from the training vectors of the two classes. To 
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formally define an SVM, consider a set of training vectors (𝑥1,𝑦1), (𝑥2,𝑦2), … , (𝑥𝑝, 𝑦𝑝)…, where 
𝑥𝑖 ∈ 𝑅𝑛  denotes the i-th input vector and 𝑦𝑖 ∈ {+1,−1} is the corresponding label. If there are 
unequal misclassification costs, the optimization problem becomes: 
 

minimize 
1
2
‖𝑤‖2 + 𝐶+ � 𝜉𝑖 + 𝐶_ � 𝜉𝑗

𝑗:𝑦𝑗=−1𝑖:𝑦𝑖=1

 

Subject to 𝑦𝑘(𝑤 ∙ 𝑥𝑘 + 𝑏) ≥ 1 − 𝜉𝑘,    𝜉𝑘 ≥ 0,    

 
 

EQ. 3 

 
                             

where w is a vector normal to the hyperplane, |𝑏|/‖𝑤‖ is the distance of the hyperplane from the 
origin, ‖𝑤‖ is the Euclidean norm of w, C+/C- are classification costs that enable a tradeoff between 
training errors (C+ for positive training patterns and C- for the negative patterns) and the margin d. 
The slack variable 𝜉𝑖 allows for errors in classification.  

 
To handle classes that are not linearly separable, kernel functions are used that remap the training 
vectors into a higher k-dimensional space (k >> n) where examples become separable. With the 
inclusion of kernel functions and Lagrange multipliers 𝛼𝑖, the dual optimization problem can be 
formulated as: 
 

maximize 𝑤(𝛼)�𝛼𝑖 − � 𝛼𝑖𝑦𝑖𝛼𝑗𝑦𝑗𝐾(𝑥𝑖 ∙ 𝑥𝑗)
𝑙

𝑖=1;𝑗=1

𝑙

𝑖=1

 

                     𝐶 ≥ 𝛼𝑖 ≥ 0  ∀𝑖  ∑ 𝛼𝑖𝑦𝑖 = 0𝑙
𝑖=1 .   

 
EQ. 4 

 
                        

Training examples with a nonzero α are called Support Vectors (SVs). The hyperplane is 
completely defined by the SVs, which denote the training points lying at minimum distance from 
the hyperplane itself. The solution of the classification problem becomes a decision function: 
 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 �� 𝛼𝑖𝑦𝑖𝐾(𝑠𝑖 , 𝑥) + 𝑏
𝑁𝑆𝑉

𝑖=1
�, 

 
EQ. 5 

 
                   

where x is a vector to be classified, the 𝑠𝑖’s are the support vectors (𝑁𝑆𝑉  in total), and 𝐾(𝑠𝑖 , 𝑥) is the 
kernel function. 

 
2.4 Random subspace of RotBoost with NPE (RSR) 

 
Rotation Boosting [30], or RotBoost, combines two ensemble techniques: AdaBoost and Rotation 
Forest. Experimental results reported in [30] show that RotBoost outperforms several variants of 
AdaBoost and Rotation Forest.  

 
Starting from the original code shared by the authors of [30], in this paper the RotBoost method is 
improved by combining it with RS. Moreover, the Rotation Forest part of the method adopts the 
neighborhood preserving embedding (NPE) feature transform in lieu of PCA. Our choice is 
motivated by [19], which shows that RotBoost coupled with NPE outperforms standard RotBoost. 
RotBoost and NPE are described in detail below.  

 
2.4.1 Rotation Boosting (RotBoost)  

 
RotBoost [30] is an ensemble classifier technique obtained from a combination of AdaBoost and 
Rotation Forest. AdaBoost [32] is a sequential ensemble algorithm where a new classifier is built 
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each iteration by taking into account the performance obtained by the classifier created in the 
previous iteration. A weight is associated with each training pattern. At the beginning of an 
iteration, the weights of patterns that were misclassified by the previous classifier are increased, and 
the weights of correctly classified instances are decreased. In this way, the method focuses on 
difficult instances, since in each step the goal is to correctly classify instances that were 
misclassified in the previous iteration. 
 
RotationForest [31] is an ensemble technique that builds each classifier on a training set that is 
modified by applying PCA. The primary heuristic is to exploit a feature transform method and then 
reconstruct a full feature set for each classifier included in the ensemble. This is performed in the 
following way: the feature set is randomly split into K subsets, or parameters, and PCA is applied 
separately to each subset. By pooling all principal components, a new set of n features is obtained. 
In this way data are linearly mapped into the new feature space, and classifiers are trained using 
them. The goal is to promote diversity through feature extraction while preserving accuracy by 
keeping all the extracted principal components. 

 
The RotBoost algorithm is a simple combination of AdaBoost and Rotation Forest. PCA is applied 
first as in RotationForest, and a Rotation Matrix is obtained that maps data into a new feature space. 
Base classifiers are then built by applying the AdaBoost technique. As demonstrated in [30], 
RotBoost exhibits significantly lower misclassification errors with respect to both AdaBoost and 
RotationForest. 
 
2.4.2 Neighborhood Preserving Embedding (NPE)  

 
Neighborhood Preserving Embedding (NPE) [33] is an algorithm that solves the general problem of 
dimensionality reduction.

2
 Given a set of points 𝑥1, 𝑥2, … , 𝑥𝑚  ∈ 𝑅𝑚 , the idea is to find a 

transformation matrix A that maps these points into another set 𝑦1,𝑦2, … 𝑦𝑚  ∈ 𝑅𝑑 where 𝑑 ≪ 𝑚. In 
this way, 𝑦𝑖 = 𝐴𝑇𝑥𝑖 represents 𝑥𝑖 in a space with significantly less dimensions.  

 
NPE begins by building a weight matrix to describe the relationships between data points: each 
point is described as a weighted combination of its neighbors. An optimal embedding is sought such 
that the neighborhood structure is preserved in the reduced space.  
 
The algorithm can be formalized in three steps: 

1) Build an adjacency graph. Define a graph G with m nodes. The i-th node represents the 
point 𝑥𝑖. There is an edge between i and j iff 𝑥𝑗 is one of the K nearest neighbors of 𝑥𝑖; 

2) Compute weights. In this step weights on edges are calculated. W is the weight matrix 
and 𝑊𝑖𝑗 is the weight of the edge from node i to node j. The matrix can be computed by 
minimizing the objective function: 
 

min��𝑥𝑖 −�𝑊𝑖𝑗𝑥𝑗

𝑚

𝑗

�

2𝑚

𝑖

 

Subject to: ∑ 𝑊𝑖𝑗 = 1, 𝑗 = 1,2, … ,𝑚𝑚
𝑗 ; 

 
 

EQ. 6 

 
                                

3) Compute the Projection. In this step the linear projection is computed. The following 
eigenvector problem is solved: 𝑋𝑀𝑋𝑇𝐚 = 𝝀𝑋𝑋𝑇𝐚. The local manifold structure is then 
preserved using the following transformation matrix A that maps 𝑥𝑖 to 𝑦𝑖: 

2 MATLAB code available from http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html. 
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 𝑦𝑖 = 𝐴𝑇𝑥𝑖 , where  𝐀 = (𝐚0,𝐚1, … ,𝐚𝑑−1).    EQ. 7 
 

           
2.5 Cluster-Based Imputation (CBor_EM) 

 
Cluster-based imputation (CBor_EM) [20] is an ensemble built using a multiple imputation 
approach. First the missing features are calculated using EM, then the training patterns are clustered 
into CN groups (CN=5, in this paper). For each group a separate EM imputation is performed, and 
the resulting training set is used to build a classifier, which is a random subspace of SVMs. Finally, 
the CN classifiers are combined by sum rule. Moreover, in the original algorithm the multiple 
imputation method is coupled, by sum rule, with a random subspace of SVMs trained using the 
whole dataset and EM (based on the whole dataset) as imputation method (see [20] for details). The 
experiments in [20] show that the multiple imputation outperforms other state-of-the-art imputation 
approaches (CBor_EM is compared with a number of recent methods using more than 10 datasets). 
In this paper we test the original method based on EM using the original parameters (i.e., the same 
number of imputations and parameters of the clustering procedure) without any fine-tuning. We 
also examine a variant of the method where random subspaces are built before the clustering and 
imputation step. This method is referred to as CBI in the experimental section. This variant should 
work better with correlated features since random subspace is performed before the other steps.  
 
Pseudocode for CBI can be written as follows: 

 
TRAINING 

1. NORMALIZATION 
1.1 Normalize the original training patterns (OTR) and the testing patterns to the 0÷1 

interval. Replace the missing values in the training set using the EM imputation, 
thus obtaining a new training set called ETR. 

For k = 1 to 50 do: 
2. RANDOM SUBSPACE 

Extract from OTR and ETR two random subspaces, OTRk and ETRk, that retain 50% of 
the set of original features 

3. CLUSTERING 
3.1 Use the fuzzy-based clustering method to cluster the patterns of ETRk into CN 

groups (we simply set CN =10) 
For t = 1 to CN do: 
3.2 Let IDX be the indices of training patterns in ETRk that have a similarity to the t-

th cluster greater than TH (we fix TH=0.25 as in [20]). Let Dt be a subset of 
OTRk built using the patterns whose indices belong to IDX 

3.3 While Dt contains less than 25 patterns or there exists a feature whose value is 
missing in all the patterns that belong to Dt: 
assign to Dt a random subset of 25% of all the training patterns 

4. EM IMPUTATION 
4.1 Fill in the missing values of OTRk by performing a new EM imputation that uses 

only the training patterns in Dt. Let ETRk,t be the training set built using Mt 
5. CLASSIFICATION  

5.1 Train a support vector machine using ETR k,t and classify the test patterns 
Endfor 

Endfor 
6. FUSION 

6.1 Combine the scores obtained by the different SVMs by sum rule 
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3. EXPERIMENTAL RESULTS 
 
To compare our system with other state-of-the-art approaches, we report results obtained using the 
Datasets with induced missing values from the KEEL Repository. 3  Table 1 shows the main 
characteristics of the datasets in terms of the number of features, examples, and classes. A detailed 
description of these databases is available on the UCI machine learning website.4 
 
In the KEEL datasets only the training partitions are affected by missing values: to be precise, the 
datasets have been built by randomly removing 10% of the values. We have also modified the 
datasets to introduce 10% or 25% of missing values in the test partitions for performing further 
tests. The features in each dataset are linearly normalized to the 0÷1 interval before using them to 
train the classifiers. 
 

DATASET Abbreviation #Features #Examples #Classes 
Iris IR 4 150 3 
Pima PI 8 768 2 
Wine WI 13 178 3 
Australian AU 14 690 2 
Newthyroid NT 5 215 3 
Ecoli EC 7 336 8 
German GE 20 1000 2 
Magic MA 10 1902 2 
Shuttle SH 9 2175 7 
Satimage SA 36 6435 7 

 
Table 1. Characteristics of the datasets used in the experiments: number of features, number of 

examples, and number of classes. 
 
A 10-fold cross-validation protocol is used in all experiments. For comparison purposes, it is 
possible to download the 10-fold cross-validation partitions from the KEEL Repository.  

 
The error area under the ROC curve (EUC) [3, 25] is used as the performance metric. The ROC 
curve is a plot of the sensitivity versus false positives (1 - specificity). The error area under the 
ROC curve can be interpreted as the probability that the classifier will assign a lower score to a 
randomly chosen positive sample than it would to a randomly chosen negative sample. When a 
multiclass dataset is used, the one-versus-all area under ROC curve is used as the performance 
indicator [16]. In this case, the final EUC value is obtained by averaging all class values. The area 
under the ROC curve is considered one of the most reliable performance metrics [25] since it is 
based on both sensitivity and specificity. 
 
Table 2 shows the results of the following classifiers when the original KEEL datasets (where only 
the training sets contain missing values) are used: 

• SVM: stand-alone SVM (see Section 2.3) with kernel and parameters tuned separately for 
each dataset. 

• RSS: random subspace of SVMs (see Section 2.2). 
• RSR: random subspace of RotBoost with NPE (see Section 2.4). 
• CBor_EM: cluster-based imputation (see Section 2.5) as proposed in [20]. The number of 

subspaces is set to 50. 

3 http://sci2s.ugr.es/keel/missing.php#sub2b (accessed: 8 October 2012). 
4 http://archive.ics.uci.edu/ml/ (accessed: 8 October 2012). 
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• CBI: variant of cluster-based imputation (see Section 2.5). The number of subspaces is also 
50. 

• CBI+RSS: CBI coupled with RSS. 
• SVM+RSR: sum rule between SVM and RSR. 
• XSVM+RSR: weighted sum rule between SVM and RSR. The weight of SVM is X while 

that of RSR is one. 
• XCBor+RSR: weighted sum rule between CBor_EM and RSR. The weight of SVM is X 

while that of RSR is one. 
 
The implementation of SVM used in all our experiments is the one provided by the popular 
LibSVM library. 
 
The outcome of the comparison is summarized in Table 2. The column named Av is the average 
rank and reports the relative position of a classifier against the others (if a given classifier is 
consistently the best in all datasets, then its rank would be 1). 
 

DATASET AU EC GE IR MA NT PI SA SH WI Av 
SVM 6.94 3.89 24.68 0.20 15.92 0.12 17.05 1.09 0.49 0.04 7.9 
RSS 7.37 4.17 23.04 0.53 15.45 0.22 17.00 0.94 0.69 0.04 9.1 
RSR 7.02 4.65 21.26 0.27 12.77 0.10 17.27 1.00 0.01 0.00 6.0 
CBor_EM 7.31 4.13 22.29 0.27 14.02 0.12 16.69 0.94 0.06 0.04 7.7 
CBI 7.66 5.21 23.14 1.93 16.40 3.38 18.47 1.18 1.16 0.00 10.9 
CBI+RSS 7.46 4.34 22.93 0.93 15.57 0.48 17.46 1.05 0.84 0.00 9.6 
1SVM+RSR 6.81 3.88 21.81 0.13 13.11 0.06 16.50 0.83 0.03 0.00 3.0 
2SVM+RSR 6.81 3.81 22.55 0.13 13.48 0.06 16.55 0.86 0.06 0.04 4.8 
3SVM+RSR 6.75 3.71 22.96 0.13 13.82 0.15 16.59 0.89 0.09 0.04 6.1 
1CBor +RSR 6.81 4.07 20.53 0.20 11.75 0.06 16.06 0.80 0.02 0.00 3.1 
2CBor +RSR 6.94 4.01 20.84 0.27 11.86 0.06 15.97 0.83 0.03 0.00 4.3 
3CBor +RSR 7.06 4.09 21.06 0.20 11.99 0.06 15.90 0.86 0.04 0.04 5.5 

 

Table 2. EUC obtained for the different datasets and classification methods under consideration. 
Best results for each dataset are marked in bold. 

Several interesting observations can be made from the reported results: 
• A random subspace of SVMs (RSS) does not outperform a stand-alone SVM. This can be 

explained by observing that the datasets have few features; hence, on average, there is no 
correlation problem. RSS works best when there is either the curse of dimensionality and/or 
a correlation problem [23]. Probably for this reason the performance of CBI and CBI+RSS 
is lower than that obtained by the original CBor_EM method proposed in [20]. 

• The best results are obtained by the sum rule between SVM and RSR (i.e., 1SVM+RSR and 
1CBor +RSR). In our opinion, it is very interesting that our heterogeneous ensembles 
outperform the most widely used SVM library (LibSVM) even when SVM is finely tuned 
for each dataset. As our ensembles work significantly better than LibSVM, we are making 
our MATLAB code publicly available for others to use.  
 

The differences in performance between 1SVM+RSR (or 1CBor+RSR), the highest-ranking 
ensemble, and SVM, RSS, and CBor_EM are all statistically significant, as demonstrated by 
applying the Wilcoxon signed-rank test [3]. In each of these cases, the p-value of rejecting the null 
hypothesis (which assumes 1SVM+RSR exhibit the same EUC as the other classifier) was found to 
be less than 0.05. While the performance of 1SVM+RSR and 1CBor+RSR are similar. 
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The datasets in Table 1 have also been used in the literature (see [18]) for the evaluation of a 
different set of classifiers that operate with missing values. In [18], accuracy was selected as the 
measure of performance. In Table 3, we compare the accuracy of our best ensemble with the results 
reported for the same datasets in [18]. In both our results and in [18], the same 10-fold cross-
validation partitions are adopted. It is clear that our approach exhibits superior performance across 
the line. 
 

DATASET AU EC GE IR MA NT PI SH WI 
SVM+RSR 87.68 88.40 76.50 96.67 81.81 96.30 77.23 99.45 98.30 
[18] 85.71 67.70 72.26 95.73 77.13 92.13 72.49 97.57 96.52 

 

Table 3. Comparison using accuracy as the performance metric with the methods in [18].  

 
DATASET AU EC GE IR MA NT PI SA SH WI Av 
SVM 10.96 5.37 24.61 0.67 16.55 1.49 16.72 1.15 0.37 0.13 8.3 
RSS 9.17 6.45 23.29 0.73 15.37 1.62 16.70 0.98 0.21 0.08 8.0 
RSR 7.69 6.51 21.38 0.80 13.02 0.70 18.58 1.03 0.02 0.09 6.1 
CBor_EM 8.77 6.05 23.11 0.67 14.21 0.83 16.98 0.80 0.11 0.05 6.5 
CBI 7.98 8.13 23.99 2.27 21.30 2.70 19.49 1.23 4.47 0.17 10.8 
CBI+RSS 7.98 6.67 24.44 1.40 17.97 0.74 17.75 1.08 1.57 0.08 9.5 
1SVM+RSR 8.49 5.37 21.83 0.67 13.42 0.58 16.86 0.87 0.04 0.04 3.9 
2SVM+RSR 8.85 6.45 22.63 0.73 14.02 0.58 16.65 0.92 0.04 0.04 5.4 
3SVM+RSR 9.25 6.51 23.09 0.73 14.47 0.62 16.51 0.95 0.11 0.04 6.9 
1CBor +RSR 8.06 5.68 21.57 0.73 12.95 0.45 17.00 0.82 0.02 0.04 3.9 
2CBor +RSR 8.19 5.83 21.77 0.67 13.15 0.48 16.88 0.79 0.04 0.04 4.0 
3CBor +RSR 8.29 5.91 21.99 0.67 13.24 0.58 16.71 0.77 0.05 0.04 4.7 

 

Table 4. EUC obtained using the datasets where both training/testing partitions contain 10% of 
missing values. Best results for each dataset are marked in bold. 

 

DATASET AU EC GE IR MA NT PI SA SH WI Av 
SVM 10.69 6.46 26.57 1.53 19.01 4.96 18.60 1.31 0.69 0.27 8.5 
RSS 10.16 7.22 26.07 2.33 18.49 4.80 18.69 1.07 0.43 0.24 8.6 
RSR 8.68 6.35 23.24 2.33 15.47 2.36 19.74 1.15 0.42 0.40 6.2 
CBor_EM 9.01 6.97 25.65 1.60 17.40 2.65 18.52 0.86 0.35 0.13 5.7 
1SVM+RSR 9.11 5.36 23.91 1.67 15.71 2.24 18.25 0.96 0.18 0.28 4.3 
2SVM+RSR 9.45 5.40 24.61 1.60 16.18 2.94 18.38 1.02 0.25 0.29 5.8 
3SVM+RSR 9.76 5.53 25.01 1.40 16.58 3.36 18.41 1.05 0.30 0.22 5.7 
1CBor +RSR 8.46 6.14 23.30 1.67 15.56 1.83 18.30 0.90 0.14 0.24 3.2 
2CBor +RSR 8.55 6.37 23.55 1.53 15.78 1.89 18.07 0.86 0.18 0.19 3.0 
3CBor +RSR 8.69 6.40 23.80 1.67 15.99 2.01 18.15 0.85 0.20 0.15 4.0 

 

Table 5. EUC obtained using the datasets where both training/testing partitions contain 25% of 
missing values. Best results for each dataset are marked in bold. 
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As a last experiment, we compare the classifiers using our modified datasets that introduce 10% and 
25% missing values both in the training patterns and in the testing patterns. In table 4 we report the 
results obtained using the datasets with 10% of missing values, while in Table 5 we report the 
results with 25% of missing values. 
 
In these tests, both 1SVM+RSR and 1CBor +RSR do not perform better than CBor_EM with p-
value < 0.05 but with p < 0.10. However, considering that in the previous test 
1SVM+RSR/1CBor+RSR outperformed CBor_EM, we can conclude that they are more consistent 
in providing a high level of performance. To corroborate this observation, further tests should be 
performed with different percentages of missing values. We also note that both 1SVM+RSR and 
1CBor+RSR continue to perform better than the two SVM-based approaches (i.e., SVM and RSS), 
as confirmed by the Wilcoxon test: the p-value of rejecting the null hypothesis is, again, found to be 
less than 0.05. 
 
Finally, we remark that the additional tests with an increased number of missing values do not allow 
us to discriminate the performance of the two best ensembles, 1SVM+RSR and 1CBor+RSR. With 
10% of missing values in the test set, the two ensembles obtain the same performance; with 25% of 
missing values, 1CBor+RSR outperforms 1SVM+RSR but with too high a p-value (i.e., 0.25) for a 
solid conclusion. All in all, our experiments in this paper point out 1CBor+RSR is the best 
performing ensemble. However, further datasets should definitely be considered to assess the 
performance difference, if any, between 1CBor+RSR and 1SVM+RSR.  

4. CONCLUSION 
 
In this paper we experimentally compare several classifiers and heterogeneous ensembles of 
classifiers to assess their performance in the presence of missing values. Ten different datasets are 
considered, addressing a wide spectrum of diverse problems. We test three versions of the datasets. 
In the first version, only the training data contains missing values (10%). In the second and third 
versions, both the training and testing patterns contain missing values (10%/25%, respectively). 
 
We identify an ensemble of ensembles, which we call 1CBor+RSR, that outperforms two prominent 
solutions: 

1. The most widely used SVM library (LibSVM), even when SVM is finely tuned for each 
dataset. We remark that our result is not trivial since, as we showed in Section 3, a simple 
ensemble of SVMs is not enough to boost performance. 

2. The original method for missing imputation proposed in [27], which in turn has already been 
shown to exhibit better performance than several state-of-the-art imputation approaches. 

The superior performance of our ensemble is confirmed by the Wilcoxon signed-rank test. 
 

In future work, we plan to investigate further the validity of our heterogeneous ensembles by 
applying them to a wider selection of datasets exhibiting several different characteristics of patterns. 
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