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Abstract 
In this work we proposed an ensemble of texture 

descriptors for virus image classification. Novel variants of 
texture descriptors, coupled with support vector machines as 
the classifier, are proposed. The novel variants of texture 
descriptors include: 1) a quinary coding of different local 
binary pattern variants, 2) two new approaches based on 
quinary coding (a selected multithreshold local quinary 
pattern and a selected multithreshold local quinary 
configuration pattern), 3) a new approach based on the co-
occurrence matrix, and 4) an ensemble of local phase 
quantization variants with ternary encoding. Our system is 
compared with and shown to outperform several state of the 
art texture descriptors. These results are validated on a 
dataset of 1500 images with 15 classes. MATLAB code 
implementing our descriptors is publically available at 
http://www.dei.unipd.it/wdyn/?IDsezione=3314&IDgruppo_
pass=124&preview=  

Keywords: protein classification; texture descriptors; 
primary structure; local phase quantization; support vector 
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1 Introduction 
Negative stain transmission electron microscopy (TEM) is a 
microscopy technique that produces distinctive surface 
textures. TEM has proven to be very valuable in virus 
detection, discovery, and taxonomy [1, 2]. Until recently, 
classification of TEM images was exclusively performed at 
the microscope by human experts. Since expert inspection is 
expensive and results depend on the skills and experience of 
each inspector, automation of TEM image classification has 
become desirable.    
 TEM virus images are well suited to machine pattern 
analysis due to their properties of size, shape, and texture. 
For instance, virus shapes can range from icosahedral 
patterns to highly pleomorphic particles. Virus shape and 

size, alone, however, are insufficient for confirming specific 
virus types. Texture provides indispensable information, as 
many viruses show distinct and recurring texture patterns.  

In the last two decades, much work in computer 
vision has focused on image textures. Early texture 
classification methods explored the statistical analysis of 
images. Representative of these statistical approaches are 
methods based on the co-occurrence matrix [3] and filtering 
[4]. In [5], Ojala et al. proposed a Local Binary Pattern 
(LBP) histogram for rotation invariant texture classification. 
LBP, along with its variants, is a simple yet efficient operator 
for describing the local image pattern and has achieved 
impressive classification results on benchmark datasets (see, 
e.g., [6] for virus image classification and [7] for protein 
subcellular localization)  and in real-world applications (see, 
e.g., [8, 9]). During the last decade, LBP has distinguished 
itself by its simplicity, effectiveness, and robustness in 
detection of textural and structural information. 
 Despite recent advances in image texture analysis and the 
crucial role texture plays in TEM virus classification, few 
papers have examined machine analysis of virus textures in 
TEM images.  Ring filters in the Fourier power spectrum 
were used as features in [10] and higher order spectral 
features were used in [11] to differentiate four icosahedral 
viruses. In [12] a radical density profile (RDP) was used to 
distinguish intensity variations between three maturation 
stages of human cytomegalovirus capsids in TEM images of 
cell sections. Finally, in [6] an ensemble combining LBP and 
RDP is used to discriminate fifteen virus types.  

In this paper we compare the performance of some 
recent local binary pattern (LBP) variants in classifying 
TEM virus images. For each method, we implement its 
quinary coding version [7], explained in detail in section 2.1. 
For two quinary based approaches (the multithreshold local 
quinary pattern and the multithreshold local quinary 
configuration pattern), sequential forward floating selection 
(SFFS) [13] is used to select a set of optimal parameters for 
building the ensemble.  An ensemble is also built by 
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combining the different local phase quantization descriptors 
(LPQ), i.e., by varying their parameters (not just their filter 
size), using a ternary coding scheme instead of a binary one 
[7]. This set of LPQ descriptors thus combined is likewise 
chosen by SFFS. Moreover, a variant of a very recent 
method [14, 15]  where the features are extracted considering 
the co-occurrence matrix as a 3D shape (SHAPE) is 
proposed. The proposed system is tested in a publicly 
available dataset located http://www.cb.uu.se/~gustaf/ 
virustexture /index.html. It is composed by 1500 images of 
15 different virus types. 
2 Texture Descriptors 
2.1 Multithreshold Local Quinary Pattern (MLQP) 

MLQP operator is a development of the canonical Local 
Binary Pattern (LBP) operator [5] which assigns a binary 
label to each pixel of an image based on the local 
information extracted from a circular neighborhood of P 
pixels and radius R according to the following equation: 

 
where 

 
 

First, we introduced into the binary coding s(x) two more 
thresholds (τ1, τ2) thus arriving at the following quinary 
coding: 

 
To reduce the verbosity of the quinary encoded labels 

assigned to each pixel of the image, the quinary labels are 
split into 4 sets of binary patterns, according to the binary 
function bc(x),c∈{-2,-1, 1,2}: 

 
By using the uniform rotation invariant (riu2) LBP 

mapping and considering the (P=8,R=1) and (P=16,R=2) 
neighborhoods, the final histogram is made of 112 bins. 

The second step in defining MLQP is the threshold 
selection. As reported in [7], we chose a bunch of 25 
threshold couples according to τ1={1,3,5,7,9} and τ2={τ1+2, 
…, 11}, each of them producing a single 112 bin histogram, 
i.e. a 112 valued feature vector useful for classification tasks. 
In case of a 2-class dataset, the 25 feature vectors, obtained 
from the 25 threshold couples, are then used for training 25 
SVMs and the 25 different classification results are then 
fused together according to the sum rule. In case of a multi-
class dataset (m classes), the "one vs all" classification is 
used: 

• Training m SVMs for each of the 25 feature sets; 
• Classifying each feature set (out of 25) with its own 

group of m SVMs, getting m partial scores (each 
relative to one class). 

• Fusing, according to the sum rule, the 25 partial scores 
relative to the m-th class, thus getting m different 
final scores; 

• Assigning the class out of the m classes according to 
the highest final score  

2.2 Multithreshold Local Phase Quantization with 
Ternary Coding (MLPQ3) 

A similar approach applied to the Local Phase Quantization 
(LPQ) operator, led to the Multithreshold LPQ with Ternary 
Coding (MLPQ3). LPQ is based on the blur invariance of the 
Fourier Transform Phase [14] and it labels each pixel of an 
image with a binary label based on the real and imaginary 
parts of the 2D Fourier Transform computed at 4 specific 
2D-frequencies (Fx = [Re{ F c

x }, Im{ F c
x }]T) for each 

neighborhood (size 3x3 or 5x5 pixels) centered in the pixel 
to be labeled. A detailed description of the operator in 
reported in [16].  

We first replaced the original scalar quantizer: 

, 
where gj represents the j-th out of the 8 components of Fx, 
with its ternary version: 
 

, 
where ρ is the standard deviation of the decorrelated Fx 
components and τ is a threshold.

 
The quantized coefficients are then represented as integers 

in the interval 0-255 using the following binary codings:  

 
and 

 
b+ and b- values are then summarized in two distinct 256 
bins histograms and the two histograms are concatenated 
thus providing a 512 valued feature vector (for both the 
neighborhood of size 3 and 5, i.e. the final feature vector is 
1024 bins). 

Then we applied the multithreshold approach by choosing 
5 different thresholds τ∈{0.2, 0.4, 0.6, 0.8, 1} and thus 
getting 5 feature sets. As done for MLQP, the "one vs all" 
classification is used considering the five feature sets 
(instead of the MLQP 25 ones). 

We also built another ensemble, which we call 
MLQP-FE, by combining sets of LPQ descriptors varying 
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different parameters: the filter size {3, 5}; the scalar 
frequency {0.8, 1.2, 1.6, 2}; the correlation coefficient 
between adjacent pixel values {0.75, 1.15, 1.55, 1.95}. A 
subset of all the possible combination is extracted using 
SFFS on the training data. 
2.3 3D Shape 

Texture is analyzed by means of the Gray Level Dependency 
Matrix (GLDM), which is a technique for measuring pixel 
transitions. Each element, or bin, of the matrix contains the 
number of occurrences of a specific transition between two 
grayscale levels, which are the bin coordinates in the matrix 
itself. Thus, GLDM is a 256 x 256 matrix irrespective of the 
dimension of the analyzed image. The pixel couples are 
chosen based on two parameters, the distance and the angle 
at which they are taken. 

To simplify the texture analysis task, the GLDM is 
analyzed by means of a number of features that represent a 
compact way of describing its shape. The GLDM is a three-
dimensional function that shows a strong and large peak 
along the principal diagonal, i.e., along the region 
representing pixel couples of very similar grey levels that are 
very likely to be found, as it can be seen in figure 1 (left). 
The shape of such a peak, also called the main (or principal) 
component, is analyzed by considering level curves of the 
GLDM at different heights. Since each curve can be made of 
more than one contour, the largest one is identified as the 
main component, which is approximated with an ellipse to 
simplify the analysis. 

Once the main component has been evaluated at 
multiple heights, ranging from 1 to 20, features are 
calculated depending on the evolution of the shape of the 
ellipses over the different height values (obviously, the 
ellipses at lower heights will have larger areas). This is 
summarized in figure 1, in which a three-dimensional view 
of a GLDM is shown (left) together with the result of the 
main component detection at two different heights (center, 
right). 

 

 
Figure 1: An example of GLDM (left) on which two 

level curves are considered. In the central and right images, 
the main component has been identified and approximated 
with an ellipse at the two heights. 

  
The proposed features are used to measure the following 

characteristics (details in [7][8]): 
1. Evenness: measures how evenly the minor axis of the 

ellipses decreases. 

2. Minor axis spread: the difference between the 
minimum and maximum values for the ellipse minor 
axis. 

3. Minimum value for the minor axis. 
4. Average of the height/width ratio among all ellipses. 
5. Total volume under the level curves. 
6. Area of the smallest ellipse. 
7. The ratio between the smallest and largest ellipses. 
8. Volume of the peak, measured as the volume of the 

GLDM which is above the highest level curve. 
9. Number of blank locations. 
The above features measure the GLDM in several ways: 

some of them concentrate on its central part (features 1, 2, 
4), while others aim at relating the upper and lower parts (7), 
and another group focuses on the upper part (3, 6, 8). Feature 
5 considers the area under the highest level curve, that is a 
general characteristic of the GLDM; finally, feature 9 is the 
only one that does not focus on the principal component, but 
rather on the surrounding area. 

The process described above provides good performances 
when the GLDM has a large volume, i.e. the sum of the bin 
heights is large, which leads to a well defined shape of the 
GLDM itself. Such volume depends on the number of 
couples of the analyzed image pixels, which in turn depends 
on the size of the analyzed image, and also on the distance 
and orientation of the pixel couples. This last dependency is 
very weak, therefore it is possible to approximate the GLDM 
volume with the number of pixels of the considered image: 
this means that the performance of the aforementioned 
process drops when it is applied to images with small 
dimensions. From practical experience, this problem 
appeared when using input images composed of less than 
10000 pixels: each level curve was composed of very few 
points, that made it impossible to get a reasonable result for 
the elliptic fitting. This problem becomes more evident at 
higher levels, so it can happen that the analysis can be 
performed only on a reduced number of levels. In this 
situation it is still possible to perform the texture analysis by 
neglecting the levels for which the elliptic fitting cannot be 
obtained: this is done by forcing the feature values to a 
conventional value of 0. 

For the tested approaches the GLDMs are obtained using 
d=1 and d=3 with an angle of {0°, 45°, 90°, 135°}. We test 
several methods based on the co-occurrence matrix: 
• 5S, where five shape based descriptors are combined 

(each used for training a different SVM, then the set 
of SVMs is combined by sum rule), the first extracted 
from the whole co-occurrence matrix; the others from 
sub-windows of the GLDM (from the coordinates: (0, 
0) to (127, 127); (128, 128) to (255, 255); (0, 0) to 
(191, 191); (64, 64) to (255, 255)). 

• 13S, where we combine thirteen shape based descriptors, 
the five of 5S, and other 8 extracted from sub-
windows of the GLDM: (0, 0) to (63, 63); (31, 31) to 
(95, 95); (63, 63) to (127, 127); (95, 95) to (159, 
159); (127, 127) to (191, 191); (159, 159) to (223, 
223); (191, 191) to (255, 255); (63, 63) to (191, 191).  
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Here the thirteen descriptors are combined by 
weighted sum rule1, the weights of the first 5 
descriptors are 1, while the weight of the last 8 
descriptors is 0.5. 
. 

3 Experimental Results 
In this work we used the "object scale" virus dataset tested in 
[6] available at http://www.cb.uu.se/~gustaf/virustexture 
/index.html. The dataset is composed by 1500 images of  15 
different virus types, with the radius of each virus particle is 
represented by 20 pixels (see [6] for more details). 
The following approaches2 are compared (mean accuracy as 

performance indicator) in Table 1a: 
• HAR, standard method based on 13 features introduced 

by Haralick3; 
• 5S, the method defined in section 2.3;  
• 13S, the method defined in section 2.3; 
• NewH, the fusion by weighted sum rule between 13S 

and HAR4, where the weight of HAR is 1 while the 
weight of 13S is 0.51; 

The following approaches5 are compared (mean accuracy as 
performance indicator) in Table 1b: 
• LBP, standard local binary patterns; 
• LTP, standard local ternary patterns; 
• ELB, the method proposed in [17]; 
• MLQP, standard multithreshold local quinary pattern 

[7]; 
• PLB, the method proposed in [18]; 
• PLQ, the variant of PLB where the quinary coding is 

used instead of the standard binary coding; 
• NTB, the method proposed in [19]; 
• NTQ, the variant of NTB where the quinary coding is 

used instead of the standard binary coding; 
• DLB, the method proposed in [20]; 
• DLQ, the variant of DLB where the quinary coding is 

used instead of the standard binary coding; 
• LCP, the method proposed in [21]; 
• MLC, the variant of LCP where the quinary coding is 

used instead of the standard binary coding; 
• FE1, a subset of the MLQP descriptors6 is selected by 

SFFS for maximizing the performance using only the 
training data; 

                                                           
1 Notice that the weights are not optimized in this dataset but we run 
experiments on ~10 different datasets using the same weighs, these 
experiments are not yet published 
2 For all the tested approaches the uniform rotation invariant LBP mapping 
is used and considering the (P=8,R=1) and (P=16,R=2) neighborhoods 
3 Energy; Correlation; Inertia; Entropy; Inverse difference moment; Sum 
average; Sum variance; Sum entropy; Difference average; Difference 
variance; Difference entropy; Information measure of correlation 1; 
Information measure of correlation 2 
4 Before the fusion the scores of both the approaches are normalized to 
mean 0 and std 1 
5 For all the tested approaches the uniform rotation invariant LBP mapping 
is used and considering the (P=8,R=1) and (P=16,R=2) neighborhoods 
6 We have used more couple of thresholds with respect to standard MLQP:  
for threshold=1:2:15 

• FE2, as FE1 but is a subset of MLC to be selected. 
 
The following approaches are compared in Table 1c: 
• Morph, the method proposed in [22] (here we do not 

consider the features based on the Haralick’s 
approach, since they are already reported in Table 
1a);  

• FRDP [6], it is the best method in the “object scale 
dataset” (i.e. the same used in this work) reported in 
[6]. We use the original code shared by the authors 
coupled with SVM. 

• LPQ, concatenation of the features extracted by local 
phase quantization with radius 3 and 5; 

• MLPQ3, the multi-threshold approach proposed in [7] 
(exactly the same parameters).  

• MLPQ3-FE, selection of a subset of the different 
descriptors LPQ descriptors varying different 
parameters (see section 2.2) by SFFS as in FE1. 

• FUSION, fusion by sum rule4 among NewH, MLC, 
Morph and FRDP (the best 4 methods, each belong to 
a different type of descriptors).  

From the results reported in the previous tables we can make 
the following conclusions: 
• Multithreshold quinary approach outperforms the base 

approaches (i.e. MLQP outperforms LBP, PLQ 
outperforms PLB, NTLQ outperforms NTLB, DLQ 
outperforms DLB, MLC outperforms LCP); 

• Selection of the set of parameters boost the performance 
of MLQP but does not improve MLC; 

• In this classification problem MLPQ3 works poorly 
since some feature sets composing the ensemble got 
low performances (the descriptors that belong to 
MLPQ3 obtains an accuracy of 62.9%, 58.9%, 52.7%, 
49.6% and 48.2%) but MLPQ3-FE outperforms LPQ 
since the low performance descriptors are not selected 
by SFFS; 

• The proposed NewH approach outperforms standard 
Haralik’s features; 

• As widely reported in different classification problems, 
the fusion of different descriptors (i.e. the method 
named FUSION) obtains the best performance. 

. 
4 Conclusion 
In this paper we compare different LBP variants and for the 
first time we report the performance of their multithreshold 

                                                                                                   
        for threshold2=threshold+2:19 
…. Feature extraction with thresholds [threshold, threshold2] 
        end 
    end 
    for threshold=1:2:15 
        for threshold2=threshold+4:19 
…. Feature extraction with thresholds [threshold, threshold2] 
        end 
    end 
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quinary variants. The main novelty of the paper is the 
experimental assessment of the usefulness of the quinary 
coding coupled with different LBP-based new descriptors. 
Another interesting result is that we show a method for 
improving the performance obtained with the information 
extracted from the co-occurrence matrix. 

In the original paper [6], where the dataset used in this 
paper was proposed, the authors obtain a mean accuracy of 
73.8% and a median accuracy of 79.0% (personal 
communication of the authors) using FRDP and 
performances lower than 60% with LBP and its variants (on 
the “object scale" dataset). In the “fixed scale" dataset (not 
available) the best result in [6] (median accuracy ~80%) is 
obtained by an LBP variant. Moreover, the authors report 

that is useful to combine descriptors extracted from the 
“fixed scale" dataset and descriptors extracted from the 
“object scale" dataset. 

Our tests on FRDP obtain lower performances, but our 
texture variants obtain good performance (mean accuracy) 
~70% (notice that we have used the same 10-fold cross 
validation used by in [6]) and our fusion outperforms the 
result obtained in [6] using the “object scale" dataset (their 
best method obtains a mean accuracy of 73.8% while our 
fusion obtains a mean accuracy of 80.7%). 

 
 
 
 

  
HAR 5Sh 13Sh  NewH 
69.9 59.

3 
60.5 71.7 

 
LBP LTP ELB MLQP PLB PLQ NTB NTQ DLB DLQ LCP MLC FE1 FE2 
57.6 58.5 70.9 70.0 64.0 70.1 49.9 68.5 55.3 71.8 62.7 73.3 72.4 72.7 

 
Morph 
[1] 

FRDP 
[3]  

LPQ MLPQ3 MLPQ3-FE FUSION 

71.7 70.0 63.3 57.9 64.5 80.7 
 
 
Table 1. Comparison among the tested methods, (N.B. we report the mean accuracy among the classes and not the median as 
in [6]).
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