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Abstract: 
Background: 
Traditional insect species classification relies on taxonomic experts examining unique physical characteristics of specimens, a time-
consuming and error-prone process.  Machine learning (ML) offers a promising alternative by identifying subtle morphological and 
genetic differences computationally.  However, most existing approaches classify undescribed species as outliers, which limits their 
utility for biodiversity monitoring. 
Objective: 
This study aims to develop an ML method capable of simultaneously classifying described species and grouping undescribed species 
by genus, thereby advancing the field of automated insect classification. 
Method: 
We propose a novel ensemble approach combining neural networks (convolutional and attention-based) and Support Vector 
Machines (SVM), with both DNA barcoding and insect images as input data.  To optimize the neural networks for diverse data types, 
we transform one-dimensional feature vectors into matrices using wavelet transforms.  Additionally, a transformer-based architecture 
integrates DNA barcoding and image features for enhanced classification accuracy. 
Experimental Results: 
Our method was evaluated on a comprehensive dataset containing paired insect images and DNA barcodes for 1,040 species across 
four insect orders.  The results demonstrate superior performance compared to existing methods in classifying described species and 
grouping undescribed ones by genus. 
Conclusion: 
The proposed approach represents a significant advancement in automated insect classification, addressing both described and 
undescribed species.  This method has the potential to revolutionize global biodiversity monitoring.  The MATLAB/PyTorch source 
code and dataset used are available at https://github.com/LorisNanni/Insect-identification. 
Keywords: ensemble; convolutional neural networks; support vector machine; attention network; insect classification; DNA barcode. 

1. Introduction

 Analyzing biodiversity among insects is a challenging task. Entomologists must first conduct extensive 

fieldwork across diverse and often remote habitats to collect insect specimens. Once gathered, these specimens 

undergo identification through detailed morphological studies, genetic analysis, and taxonomic comparisons. 

This labor-intensive process expands our understanding of insect diversity, ecological roles, evolutionary 

relationships, and potential impacts on human activities. 

 Despite the estimated 5.5 million insect species, only about 20% have been cataloged (Stork, 2018). 

Complicating matters further, many species are vanishing before being formally identified (Costello, May, & 

Stork, 2013), making biodiversity assessments increasingly difficult. Taxonomists use morphological keys (Buck 

et al., 2009) to classify insects based on physical traits, but these keys become less effective when dealing with 

undescribed species that lack clear distinguishing features. DNA barcoding (Hebert, Cywinska, & Ball, 2003), 

Manuscript. DOI: Not available at this time.

mailto:loris.nanni@unipd.it
mailto:fusarodani@dei.unipd.it;
mailto:loris.nanni@unipd.it


2 
 

offers a supplementary approach by identifying species through genetic variation, especially when traditional 

phenotypic traits fall short (Burns, Janzen, Hajibabaei, Hallwachs, & Hebert, 2008). 

 Nonetheless, the identification process remains a bottleneck. Although the DNA Barcode Database (BOLD) 

(Ratnasingham & Hebert, 2007) stores vast data, only a fraction corresponds to identified species. This 

discrepancy underscores the slow pace of identification, exacerbated by a decline in taxonomists and traditional 

taxonomy (Orr, Ascher, Bai, Chesters, & Zhu, 2020). There is a pressing need for innovative and scalable 

methods to accelerate species discovery and identification if these obstacles are to be overcome. 

Automated approaches for data analysis and integration, such as methods capable of extracting features 

directly from data without relying on geometric morphometric landmarks, remain relatively underexplored in the 

context of integrative taxonomy (Solís-Lemus, Knowles, & Ané, 2015).  Frequently, researchers analyze 

different types of evidence independently and then synthesize them qualitatively.  Over the past two decades, 

numerous studies have applied machine learning (ML) techniques to species delimitation or identification using 

images or genetic data (Ärje et al., 2020).  However, these methods have not yet fully exploited multisource data 

in an automated manner.  Advances in artificial intelligence offer promising opportunities to integrate 

multidimensional data objectively.  For instance, artificial neural networks can automatically extract quantitative 

features to develop species profiles that capture unique character combinations along with their intraspecific 

variation (Valan, Makonyi, Maki, Vondráček, & Ronquist, 2019) 

Building on recent advancements in deep learning, B. Yang et al. (2021) introduce a convolutional neural 

network (CNN) approach, the Morphology-Molecule Network (MMNet), designed to integrate morphological 

and molecular data for species identification across the tree of life. 

 ML methods offer promising solutions since they utilize intricate data patterns to classify and detect outliers. 

Traditional ML has demonstrated potential in identifying subtle morphological features in images (Haarika, Babu, 

& Nair, 2023), even for undescribed species. Although not yet as precise as DNA-based techniques, recent 

studies suggest ML is approaching expert-level accuracy in entomology (Milošević et al., 2020; Raitoharju & 

Meissner, 2019; Valan et al., 2019). Yet these traditional models face limitations, particularly due to incomplete 

training datasets, especially for rare or undescribed species and morphological variations across insect life stages 

(Badirli et al., 2023). 
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Deep learning, a subset of ML, has been applied across various entomological domains, from pest detection 

to the study of plant-insect interactions (Doan, 2023; Hedrick et al., 2020; B. Yang et al., 2022); however, these 

methods often focus on specific insect groups, limiting their scope, (MacLeod, Canty, & Polaszek, 2022). 

Crucially, ML insect identification methods must accommodate both described and undescribed species. Most 

existing approaches assume a complete representation of species in training data. Furthermore, these methods 

struggle with large class numbers and outlier differentiation within the diverse Insecta class (Badirli et al., 2023). 

Overcoming these limitations is vital for advancing entomological research and biodiversity assessment. 

 In this study, we tackle these challenges to ML in insect classification, especially the handling of incomplete 

representations, by proposing an ensemble model designed to identify both known and unknown species. Our 

approach integrates traditional Support Vector Machines (SVMs) with deep learning by transforming traditional 

feature patterns into 2D representations through vector-to-matrix reshaping into a three-channel input and 

concatenating DNA barcoding and image features to train a transformer-based architecture. 

 Finally, the rationale for combining SVMs and neural networks in an ensemble is that it benefits from 

the unique strengths of both algorithms, making the system useful for tasks where diversity in decision 

boundaries and robustness to overfitting are key.  Neural Networks and SVMs learn in fundamentally different 

ways, so their errors often occur on different samples.  While neural networks try to minimize error through 

backpropagation across multiple layers, SVMs maximize the margin between classes.  This difference can lead 

to models that make complementary predictions.  By combining them, the ensemble can achieve better 

performance as it benefits from the diverse decision boundaries learned by each model. 

 Our evaluations demonstrate that our approach surpasses the performance of finely-tuned SVMs, which 

remain prevalent in studies where patterns are described as 1D feature vectors, as evident in the current state-of-

the-art performances reported in the insect dataset used in this work.  

 The main contributions of this paper include the following: 

 Developing an ensemble classifier that surpasses traditional SVM performance and previous SOTA; 

 Tested the proposed ensemble on more than one dataset; 
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 Proposing a novel method for representing feature vectors as images, achieved through continuous 1D 

wavelet transforms with varying mother wavelets for each image channel.  An ensemble of networks is 

created by employing different sets of randomly selected mother wavelets; 

 Providing all resources and source code to researchers in open source. 

 The paper is organized as follows: Section 2 describes the dataset used in this paper, and Section 3 reviews 

related work in vector-to-matrix reshaping methods and outlines the proposed approach.  Section 4 details the 

experiments, followed by a discussion of issues in Section 5.  The paper concludes with a summary and some 

future directions of research. 

2. Material 

In this section, we outline the DNA and image data employed in our study. We then describe the utilization of 

deep learning models for extracting feature vectors rich in information from insect images and DNA barcodes. 

Finally, we explain how the feature data is divided for training, validation, and testing purposes, as well as for 

simulating undescribed species.  

 Our study utilizes paired insect images and DNA sequence data acquired from the Barcode of Life Data 

(BOLD) system (Ratnasingham & Hebert, 2007) spanning four major Insecta orders: Diptera, Coleoptera, 

Lepidoptera, and Hymenoptera. Table 1 offers a breakdown of the dataset by order. Each insect pattern contains 

a 658 bp DNA barcode sequence (cytochrome oxidase subunit I-COI), an image, and supplementary details such 

as country of origin, life stage, order, family, subfamily, genus, and species names. 

Order #Genera   #Species #Samples 

Diptera (true flies)  63  108  2270 

Coleoptera (beetles)  164  329  4764 

Hymenoptera (sawflies, wasps, bees and ants) 59  189  3173 

Lepidoptera (butterflies and moths) 82  414  22,641 

Totals  368  1040  32,848 

 

Table 1. Breakdown of the BOLD dataset by order. 
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 The raw images are in full RGB color and typically have a width of 640 pixels and a height of 300–1000 

pixels. Only images with corresponding DNA barcodes were included in this study, and each image underwent 

manual scrutiny to eliminate low-quality, duplicate, and incomplete insect bodies, immature pigmentation, and 

missing images (e.g., with only a label provided). Only species with a minimum of ten images within a single 

barcode index number (BIN) were considered.  

 BOLD sets itself apart from other genetic databases by accepting data for unidentified or unknown organisms, 

see Agarwala et al. (2017). BOLD's DNA-based grouping algorithms initially assign a BIN to unidentified 

samples, which are closely aligned (though not perfectly so) with species groupings. Subsequently, the BOLD 

database translates the sample's DNA sequence into its protein sequence and searches its repository for a species 

or genus match. If the sequence contains less than 1% divergence from a reference sequence, the sample is 

assigned to a species; if the divergence ranges between 1% and 3%, it is assigned to a genus; otherwise, the 

sample remains unidentified. As of May 25, 2024, the BOLD Insecta database contained 7,924,425 records with 

DNA sequences, of which only 3,019,210 had species names, indicating that most records remain unidentified. 

While crucial for new species discovery, the BOLD database has a significant limitation: it does not facilitate the 

identification of these new species beyond the aforementioned measures. 

 For a fair comparison with SOTA, we use the same features to represent the patterns proposed in Badirli et 

al. (2023), where deep learning models extract significant features from raw insect images and DNA barcode 

data. Specifically, we employed a pretrained ResNet-101 model to derive 2048-dimensional image feature 

vectors from the insect images, following established guidelines. The ResNet suite of models is advantageous as 

they have been pretrained on a vast dataset of over one million ImageNet images representing 1000 different 

classes, most of which are non-insect categories. This extensive pretraining enables ResNet models to recognize 

general image characteristics akin to human perception, such as edges, corners, blobs, and colors. 

 The raw insect images were preprocessed using standard transformations to ensure compatibility with 

ImageNet images before feeding them into the pretraned ResNet-101 model: each image was resized to 256 × 

256 × 3, center-cropped to 224 × 224 × 3, and normalized using the ImageNet image pixel means [0.485, 0.456, 

0.406] and standard deviations [0.229, 0.224, 0.225]. We chose not to fine-tune the ResNet-101 model on our 
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dataset after determining that fine-tuning had minimal impact on model accuracy (see Section 5 for further 

discussion of this point).  

 For extracting the DNA barcode sequence feature vectors (500-dimensional), a convolutional neural network 

(CNN) architecture tailored for this problem was applied by Badirli et al. (2023). The DNA barcodes were 

transformed into 658 × 5 arrays, indicating the presence (1) or absence (0) of adenine, guanine, cytosine, thymine, 

and other tokens for each position in the 658-length sequence. The CNN architecture comprised three blocks of 

convolutional layers, followed by batch normalization and 2D max-pooling. The output of the third convolutional 

layer was flattened and batch normalized before being fed into a fully connected layer with 500 units, whose 

output represented the learned features. Finally, a softmax layer concluded the CNN architecture. 

 To demonstrate the effectiveness of our model in identifying previously unidentified species, it underwent 

validation and testing using datasets containing samples of species not encountered during training. As our 

collected BOLD data lacked true samples of unidentified species, simulated data was generated. For genera with 

three or more species, one-third were randomly designated as undescribed, while the remainder were marked as 

described. Only the test set included undescribed species to evaluate the model's capability to identify them. For 

validation purposes, the unidentified species within the training set were segregated similarly to the described 

species. When insect species were represented by multiple images capturing different perspectives (e.g., ventral 

and dorsal views), all images were allocated to the training set. Consequently, 27 described species had no 

representatives in the test dataset. The test dataset contained 4965 samples from 770 described species and 8463 

samples from 243 unidentified species (refer to Table 2 for details). 

 

 Train Test (described) Test (undescribed) 

# of samples  19,420  4965  8463 

# of species  797  770  243 

Table 2. Dataset splitting. 

 

 We wish to stress that the dataset used in this study is derived from previous literature, where specific 

sampling and stratification details (such as stratification by species or genus) were not explicitly provided. 
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Given the constraints of the dataset documentation, we worked within the available framework, applying the 

dataset as proposed by its original authors to maintain comparability with related studies.  

 

3. Method 

3.1 Related works on 2D matrix descriptors 

Numerous advancements and adaptations of 1D transformations have been developed to process matrix data 

directly. These include 2D Principal Component Analysis (2DPCA) (J. Yang, Zhang, Frangi, & Yang, 2004) and 

2D Linear Discriminant Analysis (2DLDA) (Li, Janardan, & Li, 2002), which effectively address the issue of 

singular scatter matrices. However, it has been noted that while LDA preserves covariance information among 

various local geometric structures, this valuable data is lost in 2DLDA. 

 Additional notable contributions include Sparse Two-Dimensional Discriminant Locality-Preserving 

Projection (S2DDLPP) (Zheng, Lai, & Li, 2008), 2D Outliers-Robust PCA (ORPCA) (Zhi & Ruan, 2008), 

Individual Local Mean-Based 2DPCA (ILM-2DPCA) (Razzak, Abu-Saris, Blumenstein, & Xu, 2020), and 

Regional Covariance Matrix Based on 2DPCA (RCM-2DPCA) (Hancherngchai, Titijaroonroj, & 

Rungrattanaubol, 2019), which tackles the problem of ineffective eigenvector generation by 2DPCA 

(Titijaroonroj, Hancherngchai, & Rungrattanaubol, 2020). 

 Recently, a novel approach for histopathological image classification using 2D vector quantification 

encoding with a bag of features was introduced by Pal and Saraswat (2020), along with a new 2D quaternion 

PCA known as BiG2DQPCA, explicitly designed for color image processing (Zhao, Jia, Gong, & Zhang, 2023).  

 Beyond these adaptations, native 2D matrix descriptors have also been developed, such as Gabor filters 

(Eustice, Pizarro, Singh, & Howland, 2002) and Local Binary Patterns (LBPs) and their derivatives (Brahnam, 

Jain, Lumini, & Nanni, 2014), which are considered powerful when applied to images. The performance 

advantage of these methods led researchers to explore transforming 1D data into 2D matrices so that such features 

as LBPs and Gabor filters could be extracted from them (Kim & Choi, 2007; Liu & Chen, 2006; Nanni, Brahnam, 

& Lumini, 2011; Z. Wang & Chen, 2008). The exploration of 1D reshaping methods in (Zhe Wang, Chen, Liu, 

& Zhang, 2008; Z. Wang & Chen, 2008) is particularly pertinent to this study since these methods were used to 

diversify classifiers using techniques such as AdaBoost. 
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 Traditional classifiers like min-sum matrix products (MSPs) (Felzenszwalb & McAuley, 2011), nonnegative 

matrix factorization (NMF) (Seung & Lee, 2001), and the matrix-pattern-oriented modified Ho-Kashyap 

classifier (MatMHKS) (Chen, Wang, & Tian, 2007) have been specifically designed for 2D matrix data. 

Moreover, adaptations of classic learning models, such as the 2D nearest neighbor (Bentley, 1975), have been 

developed to handle 2D matrix data. Methods for feeding matrix data into CNNs by representing patterns as 

matrices have been documented in Shen et al. (2021) and Zhu et al. (2021). The method proposed by Zhu et al. 

(2021) (called IGTD in the experimental section of this paper) demonstrated superior results compared to models 

trained on conventional tabular data. 

 Recently, DeepInsight (Sharma, Vans, Shigemizu, Boroevich, & Tsunoda, 2019) (called DeepINS in the 

experimental section of this paper) was developed to convert non-image samples into well-organized image 

shapes, allowing any data to be classified by CNNs, including sets of vector features. Modifications to 

DeepInsight leveraging transformer models have been explored by Gokhale, Mohanty, and Ojha (2023). Other 

approaches based on DeepInsight have been proposed for various applications (Sharma, Lysenko, Boroevich, & 

Tsunoda, 2023), including predicting patient-specific anticancer drug responses and cancer classification. Finally, 

Tran, Tayara, and Chong (2024) present an interesting application of vector-to-matrix transformation for 

mutagenicity assessment, which is vital for determining the safety of chemicals and pharmaceuticals. 

Computational models play a crucial role in predicting toxicity efficiently. Tran et al. introduced AMPred-CNN, 

a mutagenicity prediction model that uses Convolutional Neural Networks to analyze molecular structures as 

images, taking advantage of CNNs' powerful feature extraction capabilities. 

 A couple of detailed surveys along this line of research are available, where experimental investigations into 

the performance of various CNN models and transformers were conducted (Medeiros Neto, Rogerio da Silva 

Neto, & Endo, 2023; Nanni, Brahnam, Loreggia, & Barcellona, 2023).  

 

3.2 Proposed approach 

In this work, we combine SVM and neural networks. A set of neural networks is created by varying the 

input to the networks using different approaches for transforming the feature vector describing each 
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pattern into a 3-channel input (see Figure 1). In this way, we can use network topologies created for 

computer vision approaches and feed them with images and DNA barcoding features.  

 

 

Figure 1. A schematic of the proposed method is shown. Ensembles are created by training SVMs on 
feature vectors and by converting 1D vectors into three channels of 2D data using a set of three 
wavelet transforms, which are then processed by a neural network (ResNet50 in the figure); the 
outputs are subsequently fused. 

 

 We employ ResNet50 for classification (He, Zhang, Ren, & Sun, 2016) as it performs similarly to 

ResNet101 but needs less computational time. It should be noted that for feature extraction, we used 

ResNet101 for a fair comparison with the current SOTA since it applies ResNet101 for feature extraction.  

 We also train from scratch a small neural network (called Attention in the experimental section) that 

incorporates convolutional layers and self-attention. Self-attention (Vaswani et al., 2017) is a method that 

enables the network to dynamically assess the significance of different features. This mechanism, 

commonly used in tasks that require understanding contextual relationships within data, is typically 

represented as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐐𝐐,𝐊𝐊,𝐕𝐕)  =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝐐𝐐𝐊𝐊𝑇𝑇

�𝑑𝑑𝑥𝑥
�𝐕𝐕, 

where Q, K, V are queries, keys, and values, respectively, derived from the input data, and 𝑑𝑑𝑥𝑥 is the 

dimension of the keys and queries, defined in the following way: 

Q = x·Wq 

K = x·Wk 
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V = x·Wv, 

where x is the input of the layer, and the matrices Wq , Wk, and Wv  are learned during training. 

 

The above formula aids the model in directing its Attention toward pertinent patches of the input data, 

thereby bolstering its predictive and analytical process. Moreover, the multi-head attention technique is 

employed, entailing the application of Attention multiple times. The operation of multi-head self-attention 

is expressed as: 

MultiHead(𝑸𝑸,𝑲𝑲,𝑽𝑽) =Concat(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1,ℎ𝑒𝑒𝑒𝑒𝑒𝑒2, . . . , ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ)𝑾𝑾𝑂𝑂, 

where ℎ is the number of heads, 𝑾𝑾𝑂𝑂is a learnable projection matrix, and ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 =

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐐𝐐𝑖𝑖 ,𝐊𝐊𝑖𝑖 ,𝐕𝐕𝑖𝑖), the  MultiHead learnable matrices. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶() is the concatenation of the output of 

the ℎ heads. 

 Here is a detailed breakdown of the model architecture: 

 Input: The network accepts input images with size 250×250×3. 

 Convolutional Layer: Filters: 32; Kernel Size: 3×3; Padding: applied to ensure the output size 

matches the input size. 

 Batch Normalization: This layer normalizes the activations from the previous convolutional layer 

to stabilize and accelerate training. 

 A rectified linear unit (ReLU) Activation: this function is applied to introduce non-linearity to the 

model. 

 Max Pooling: Pool Size: 2×2; Stride: 2; this layer reduces the spatial dimensions of the feature 

maps. 

 Convolutional Layer: Filters: 64; Kernel Size: 3×3; Padding: applied to maintain the output size 

equivalent to the input size. 

 Batch Normalization: Normalizes the activations from the second convolutional layer. 

 ReLU Activation: Applies the ReLU activation function again. 

 Max Pooling: Pool Size: 2×2; Stride: 2; this layer further reduces the spatial dimensions of the 

feature maps. 
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 Flatten: Converts the 2D feature maps into a 1D vector. 

 Self-Attention Layer: Number of Heads: 8; Key and Query Channels: 64; This layer enables the 

network to focus on different parts of the input for a more comprehensive understanding. 

 Fully Connected Layer: This layer has units equal to the number of output classes, facilitating the 

final classification. 

 Softmax Activation: Applies the softmax function to the output of the fully connected layer, 

producing a probability distribution over the classes for classification. 

 

 The architecture of the Attention network is designed to utilize the strengths of CNNs for feature 

extraction and self-attention to capture long-range dependencies within the data, providing a robust model 

for classification tasks. 

The network topologies outlined earlier are fortified through the approach detailed in Nanni, Lumini, 

Ghidoni, and Maguolo (2020), which entails forming an ensemble of networks. This ensemble is created 

by introducing randomness into the architecture of the networks, achieved by substituting various activation 

functions for each ReLU activation layer in the original network. Specifically, a replacement activation 

function is randomly chosen from a predetermined pool. See Nanni et al. (2020) for the list of activation 

functions and equations. This alteration yields a distinct network (due to the inherent randomness in the 

selection process) with each iteration. In addition, input is shuffled for each network before transforming 

from vector to the three-channel network input. The resultant ensemble of networks is then amalgamated 

using the mean rule, resulting in a resilient combined network. 

Moreover, we propose a more computationally demanding ensemble that further boosts performance by 

adding to the above ensemble another transformer-based architecture (called TranConc in the experimental 

section), trained by concatenating DNA barcoding and image features. This topology is detailed below in section 

3.2.2. 

 

3.2.1 Vector-to-matrix using continuous wavelet 



12 
 

In mathematics, the continuous wavelet transform (CWT) is a formal method devoid of numerical 

computations that provides a comprehensive representation of a signal by continuously varying the 

translation and scale parameters of the wavelets. 

 In this context, the term "mother wavelet" refers to a continuous function existing in both the 

frequency and time domains. The primary function of the mother wavelet is to serve as a foundational 

function from which daughter wavelets are derived. These daughter wavelets are essentially translations 

and scaled versions of the mother wavelet. The scaling factor alters the signal by either compressing or 

dilating it. A lower scale factor compresses the signal, resulting in a graph with finer details, while a 

higher scale factor stretches the signal, producing a graph with fewer details. The outcome of the wavelet 

transform yields a wavelet coefficient associated with the scale 𝑎𝑎 and position 𝜏𝜏. Figure 2 illustrates an 

instance of the Morlet Wavelet varied in both scale and position. 

 

 

 

Figure 2. Example of a wavelet, from  (Nanni and Brahnam (2020)). 

 

 We view the feature vector as a signal, subjecting it to a series of wavelet transforms. The resulting 

output forms a matrix where each column represents a specific scale and each row a particular time point. 

Within this matrix, the values correspond to the wavelet coefficients, which are then resized to match the 

a=64 b=300 

a=32 b=200 

a=16 b=100 
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input size of the designated network. The Wavelet Transform can be likened to a convolution between 

the signal and scaled/shifted iterations of the mother wavelet (German-Sallo, 2011). 

 Applying the wavelet-based approach, as in Nanni and Brahnam (2020), we obtain a square matrix equal to 

the number of features, an unmanageable size for training a network. A possible solution is to resize such a matrix 

into a matrix with a size equal to the neural network input. This solution, however, significantly reduces the 

amount of information. An alternative approach is to divide the vector into a subsequence of 25 features, where, 

for each block, we apply a wavelet, obtaining a square matrix of size 25. These matrices are then concatenated 

ten per row to create a matrix of size 250×250, with missing elements replaced with 0. This matrix becomes the 

network input. This solution is performed three times to generate a final matrix with three channels. Our 

objective is to construct ensembles where, for each network, we randomly select three mother wavelets to 

generate three channels per signal (i.e., three feature vectors). These matrices are then concatenated to form 

3-channel inputs for the network. It is important to note that we consistently employ the same three mother 

wavelets in a predefined order to generate the three channels for a given network. Before the wavelet 

transform, the patterns undergo linear normalization to fall within the [0, 255] range. Only the training data 

is utilized to determine the normalization parameters. In the experimental section, we call this approach 

BlockStocWave.  

The mother wavelets composing the sets are the following: 

• Meyer, support width: infinite; effective support: [-8 8]. 

• Haar, support width: 1, filter length: 2; scaling function phi = 1 on [0 1] and 0 otherwise; wavelet 

function psi = 1 on [0 0.5), = -1 on [0.5 1] and 0 otherwise. 

• Daubechies order N=6, support width: 2N-1; filter length: 2N; regularity: about 0.2 N for large N;   

number of vanishing moments for psi: N. 

• Symlet order N=6, support width: 2N-1; filter length: 2N; number of vanishing moments for psi: N. 

• Coiflets order N=2, filter length: 6N; Number of vanishing moments for psi: 2N. 

• Biorthogonal wavelet, order Nr=2, Nd=2; support width: 2Nr+1 for reconstruction, 2Nd+1 for 

decomposition; filter length: max(2×Nr, 2×Nd) + 2; regularity for psi reconstruction: Nr-1 and Nr-2 at 

the knots; number of vanishing moments for psi decomposition: Nr. 
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• Reverse biorthogonal wavelet, order Nr=2, Nd=2; support width: 2Nd+1 for reconstruction, 2Nr+1 for 

decomposition; filter length: max(2×Nd, 2×Nr) + 2; regularity for psi reconstruction: Nd-1 and Nd-2 at 

the knots; number of vanishing moments for psi decomposition: Nd; 

• Discrete Meyer; 

• Gaussian wavelet, order 4; support width: infinite; effective support: [-5 5]; 

• Mexican hat, support width: infinite; effective support: [-5 5]; 

• Morlet, support width: infinite; effective support: [-4 4]; 

• Fejer-Korovkin orthogonal, order=4; 

• Beylkin orthogonal; 

• Vaidyanathan orthogonal. 

 

 It is important to emphasize that our selection of wavelets is not driven by a desire to optimize 

performance and risk overfitting. Instead, we utilized those available in MATLAB, employing either the 

default hyperparameters or those specified in the literature. We use these default parameters because we 

did not create a standalone method that requires the tuning of hyperparameters for boosting performance 

(but such could be performed on any of the datasets).  We use the same hyperparameters to avoid overfitting 

because we are producing a high-performing system that can be applied to any dataset in this domain.  In 

this way, we can assume that our system will work well on a wide choice of datasets, a result that should 

benefit the community.  

We have tried to replicate other published methods based on Deep learning for DNA barcoding but were 

never able to reproduce the results of the original papers, probably because parameter selections were made 

related to the particular dataset and there were no hyperdefault parameters.  In our method, everything is 

the same for all datasets.  Moreover, the code is downloadable, so it is easy to replicate our experiments. 

The uniform hyperparameters of the tested methods are reported in Table 3. 
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3.2.2 Transformer-based architecture 

 
ResNet50/Attention - Hyperparameters Values 
Number epochs 10 
Batch size 30 
Stopping criteria Early stopping based on validation loss monotony, 

validation loss not decrease for >= 2 epochs  
Optimization approach SGD 
Learning rate 0.001 
L2 Regularization 1.0000e-04 
Gradient Threshold Method L2 norm 

  
           

TranConc - Hyperparameters Values 
Number epochs 3000 
Batch size 512 
Stopping criteria Early stopping = validation loss, no decrease for >= 20 

epochs  
Optimization approach SGD 
Learning rate 0.01:0.055:0.1 (optimized using the grid search 

approach and optimizing for the validation loss). 
 

Table 3.  The hyperparameters of the tested networks. 
 

 
The previous ensemble is, in turn, combined with a more computationally demanding deep learning-based 

architecture (called TranConc in the experimental section) that performs Cross-attention mixing DNA barcoding 

and image features. Cross-attention  (Nanni et al., 2020) is based on self-attention but differs in that the source 

of keys and values comes from a different sequence than the queries. In self-attention, the key, queries, and 

values are from the same source. Cross-attention enables the model to combine two sources of information by 

computing attention weights that reflect the relevance of each element in one vector to the elements in another. 

In TranConc (schematized in Figure 3), the insect and DNA barcoding feature vectors are first processed by 

two linear layers that map vectors to the same embedding dimension of 512. Then, the Cross-attention technique 

is applied twice in both modes: the first mode is to extract queries from the image vector and keys (values from 

the DNA vector), while the second mode is to extract queries from the DNA vector and keys (values from the 

image vector). In both modes, the Multi-head Attention mechanism is done in a 2-head setup followed by a 

normalization layer and a residual connection sum with the unnormalized context vector. A GELU activation 

function is performed only the first time the Cross-attention technique processes the vectors. The two images and 
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DNA feature vectors are then concatenated, forming a vector of size 1024. The species and genera logits are 

obtained from this vector using two linear layers. 

 

Figure 3. TranConc architecture. The species and genera logits are obtained using the Cross-attention 
technique, which processes the image and DNA barcoding feature vectors jointly. *Cross-attention is 
applied twice: the GELU activation function is applied only the first time. 

 

4. Experimental section 

The classification performance was assessed by the average described species accuracy and the average 

undescribed species genus accuracy: 

1
770

 �
𝑦𝑦𝑖𝑖
𝑛𝑛𝑗𝑗

 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
770

𝑖𝑖=1
 

 

1
134

 ∑ 𝑦𝑦𝑖𝑖
𝑛𝑛𝑗𝑗

 ,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎134
𝑖𝑖=1 , 

where for class j, yj is the number of correctly classified patterns of class j, and nj is the number of total patterns 

for that class.  770 is the number of seen species, and the genera number of the undescribed species is 134.  

 In the first test, see Table 4, we compare the different approaches for transforming a vector into a matrix by 

considering the species classification (i.e., by considering only insects with known species). The average 

performance of 25 ResNet50 nets is reported. The method named StocWave applies the wavelet approach 

proposed by Nanni and Brahnam (2020). As can be observed, StocWave performs worse than BlockStocWave 

(the one proposed here); the other approaches perform similarly.  
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ResNet50 Species 

DeepINS (Sharma et al., 2019) 98.56 

StocWave  97.05 

BlockStocWave 98.65 

IGTD (Zhu et al. (2021)) 98.62 

Table 4. Average species accuracy of the 25 nets. 

In the next test, see Table 5, we report the performance of the mean rule for combining 25 networks. In this 

test, we suppose that an oracle divides the insects between those with known species and those only with known 

genera, a division protocol used by Badirli et al. (2023). 

 Interestingly, Attention works better than ResNet50. BlockStocWave obtains the best performance in three 

out of four tests (i.e., two networks and two classification tasks), but it only slightly outperforms the other 

approaches. Using wavelets performs comparably with the current SOTA, and it deserves to be investigated 

further for boosting performance.  

 

ResNet50 Species Genus 

DeepINS (Sharma et al., 2019) 99.06 73.26 

BlockStocWave 99.21 72.53 

IGTD (Zhu et al. (2021)) 99.20 66.93 

Attention Species Genus 

DeepINS (Sharma et al., 2019) 99.30 78.71 

BlockStocWave 99.32 79.88 

IGTD (Zhu et al. (2021)) 99.30 78.44 

Table 5. The mean rule between the 25 networks. 

 In Table 6, we compare the following methods: 

• The previous SOTA (Badirli et al., 2023);  
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• SVM, where the kernel and hyperparameters have been chosen with two-fold cross-validation using 

only the training data. The LibSVM toolbox for SVM. Hyperparameters are meticulously optimized 

using a grid search strategy. Both the kernel and its hyperparameters are selected through this process, 

with the polynomial kernel emerging as the best choice;  

• SVM+BlockStocWave(Attention), mean rule between SVM and BlockStocWave coupled with the 

Attention network (mean rule among the 25 networks), i.e., first the 25 networks of BlockStocWave  

are combined by mean rule, then this score is combined by mean rule with the output of SVM;  

• SVM+[BlockStocWave(Attention)+BlockStocWave(ResNet50)] as in the previous approach, but 

SVM is combined with BlockStocWave coupled with both networks (thus, the mean rule is applied 

across 50 networks before the fusion with SVM); 

• SVM+[BlockStocWave(Attention)+BlockStocWave(ResNet50)]+TranConc, as the previous 

ensemble, adding the TranConc network. 

  As evident in Table 6, our proposed fusions obtain SOTA performance. 

 

Method Species Genus 

Previous SOTA  98.21 81.95 

Previous SOTA (DNA barcoding only) 98.65 71.85 

SVM 99.22 81.26 

[BlockStocWave(Attention)+BlockStocWave(ResNet50)] 99.37 80.16 

TranConc  99.39 80.09 

SVM+[BlockStocWave(Attention)+BlockStocWave(ResNet50)] 99.37 82.51 

SVM+[BlockStocWave(Attention)+BlockStocWave(ResNet50)]+TranConc  99.47 83.22 

Table 6. Comparison with previous SOTA. 

 

 Since the source code in Badirli et al. (2023) is available, we tested it using our protocol for hyperparameters 

selection, i.e., two-fold using only the training set. Our stringent protocol decreases the performance of that 

approach (e.g., in genus classification, the performance is ~73%).  



19 
 

 In the final test, we adopt a realist protocol where all the insects are classified at the species level (the species 

are the classes). Let us suppose: 

• θ1(x) is the highest score among the different species (i.e., classes) given a pattern x; 

• θ2(x) is the second highest score of that pattern; 

• θ(x) = θ1(x)- θ2(x). 

 Our rejection criterion is as follows:  

 If θ(x)>τ, the insect is assigned to a species class; otherwise, it is assigned to a genus class (i.e., it is 

classified by the network trained using the genus as classes);  

 If a pattern belongs to a known species but is classified at the genus level, it is considered a classification 

error (see the previous equation for calculating the accuracy); clearly, a pattern with unknown species is 

regarded as an error if classified at the species level.  

 The accuracy is calculated using the average accuracy among the classes: the species accuracy is calculated 

assuming only the patterns with 𝜃𝜃(𝒙𝒙) > 𝜏𝜏. In contrast, the genus accuracy is calculated considering only the 

patterns with 𝜃𝜃(𝒙𝒙) ≤ 𝜏𝜏.    

 In Figure 4, we report the plot of the species accuracy (x-axis) vs genus accuracy (y-axis) obtained by varying 

the rejection threshold 𝜏𝜏 . The green line is obtained by SVM and the black line by our best ensemble 

(SVM+[BlockStocWave(Attention)+BlockStocWave(ResNet50)]+TranConc). To calculate the rejection 

threshold for our ensemble, we consider the TranConc logits and obtained a similar performance using SVM or 

CNN-based ensemble logits. This test clearly shows the usefulness of the proposed ensemble vs SVM.   
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Figure 4. Curve species accuracy (x-axis) vs genus accuracy (y-axis) obtained by varying the rejection 

threshold (green is the performance of SVM; black is the proposed ensemble). 

 

 Because we use a transparent and fair testing protocol, we hope our work will become a baseline for future 

research in this area. An improvement over SVM is not remarkable using the protocol applied in the results 

reported in Tables 4-6. However, the advantage is clear, considering the realistic protocol for plotting Figure 4. 

We want to point out that we chose the kernel and relative hyperparameters for SVM, which is essentially the 

most commonly used method when feature vectors represent patterns. Thus, any improvement should prove 

helpful to the community.  

It is important to note that the random choice of activation functions reduces overfitting, as detailed in (Nanni 

et al. (2020). Because of this, we have not made any selections for the training set. To validate our method 

further, we ran tests on images extracted from the BOLD Insect Classification dataset (De Gobbi, Lavezzi, & De 

Almeida Matos Junior), which contains 32,424 image samples of insect species from four Insecta orders: Diptera, 

Coleoptera, Lepidoptera, and Hymenoptera. The number of samples in the New dataset is described in Table 7. 

As shown in Table 8, the same superior results are obtained on the New dataset using the same method reported 

above. 
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 Training  Testing (described) Testing (undescribed) 

# of samples  19,994 4990 7440 

# of species  835 797 215 

 
Table 7. Description of the New dataset. 

The major drawback of our approach is that it is much more computationally burdensome than previous 

SOTA or SVM classification methods. However, our approach on the New dataset performs better than prior 

work. 

Method Species Genus 

SOTA 96.35 80.15 

SVM 98.21 82.01 

Proposed Ensemble 99.05 84.02 

Table 8. Performance in the New dataset. 

Finally, to assess the impact of size on performance using our approach, we ran tests on only one pattern for 

each class (see Table 9). As would be expected, the performance of our approach declines significantly, but our 

ensemble still outperforms SVM on this test. 

Method Species Genus 

SVM 53.69 16.36 

Proposed Ensemble 59.75 22.28 

Table 9. Performance of using only one pattern for each class. 

 

5. Discussion 

One limitation of ensemble methods is their dependence on available datasets and the substantial 

computational resources they require. When high-end performance is needed at the expense of computational 
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efficiency, distillation techniques become imperative. However, the execution times of our approach are 

manageable for many applications, as shown in Table 10, where we report computation times for a batch size of 

10,000 patterns, including time and RAM usage for a standalone network. The computation times are reported 

for a Titan V with 24 GB of RAM. For ensembles, multiply by the number of networks and account for the 

overhead. A key challenge may arise when loading the trained models into the GPU due to memory constraints. 

Since all models can run in parallel, using more GPUs will reduce computation time. The row labeled 

"BlockStocWave" refers to the method used to create matrices for the input into the neural networks. This process 

runs on a CPU, specifically an i9-10920X with 12 cores at 3.5 GHz, but it utilizes only a single core, allowing 

for 12 parallel extractions. 

 

 

 

Table 10. Comparison of computation times. 

 

The inclusion of SVM in our ensembles did not impact computation time; the difference was negligible 

with respect to the ResNet50/Attention computation time. SVM inference is performed using a CPU, while 

neural network inference is performed on a GPU. It should be noted, however, that both methods could run in 

parallel.  

From the results reported in Table 10, we can draw the following conclusions: 

• Even a large ensemble of 25 ResNet50 and 25 Attention models can classify 10,000 patterns in 12.5 

minutes. On May 25, 2024, the BOLD Insecta database contained 7,924,425 records with DNA 

sequences, while on June 6, 2022, the BOLD Insecta database had 7,192,313 records with DNA 

sequences. Thus, approximately 750,000 new elements were added in this two-year period. Given the 

calculations in Table 9, our approach can process the 750,000 new patterns in approximately 15.625 

hours.  

 Computation 
Time 

Model size 

ResNet50 11.24 sec 96 MB 
Attention 18.90 sec 3.8 MB 
BlockStocWave 0.56 sec/core --- 
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• Using a 12-core CPU, we were able to extract BlockStocWave representations for approximately twenty 

patterns every second. Thus, it is possible to extract all the representations for 750,000 additional patterns 

in 10.45 hours. Note that we do not have to extract these representations for all patterns; after extracting 

them in the first batch, we can run inference with neural networks. 

Clearly, our proposed system can run well if a GPU is available. However, it is not suited for edge computing. 

Today, however, satellite connections for uploading data are relatively easy to obtain. Many expeditions are 

armed with a Starlink connection to upload data to servers for analysis. The expense of GPUs is negligible 

compared to the costs of an expedition. Though our system is not suitable for edge computing, it works well on 

any machine with a decent GPU. Thus, computation concerns would be an issue only if there is no internet 

connection. 

However, because the computational demand is only during training time, this ensemble would not work 

well for tasks where lots of classes are being added. In this case, our system would need to be coupled with a 

continuous learning algorithm. 

 

 

Figure 5. Low-quality image examples in the New dataset. 

 

 Another concern is that the quality of input data (image clarity and the correctness of the DNA sequencing) 

affects performance (Karim & Abid, 2021). Recall that we eliminated low-quality images in the BOLD dataset 

used in the experimental section. Figure 5 provides examples of poor-quality images in the New dataset. As 

already noted in the discussion of Table 6, our system performs better than SVM on the New dataset despite 

some low-quality images. 
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Because of the challenges associated with sequencing technologies and the unavailability of high-quality 

genomic DNA, it is not always possible to obtain the full-length barcode sequence of an organism. To assess 

how our approach handles low-quality DNA sequencing, we ran the tests on our complete system proposed by 

Karim and Abid (2021), which evaluates accuracy using 300, 400, 500, and 600 bases. As shown in Table 11, 

our system is quite robust on a subset of the full DNA barcoding sequence and produces reliable results using 

only 300 bases. 

Method Species Genus 

Full-length 99.47 83.22 

600 bases 99.18 83.48 

500 bases 98.75 83.15 

400 bases 98.56 82.92 

300 bases 96.54 79.25 

 

Table 11. Results of the test proposed in (Karim & Abid, 2021) to assess poor DNA sequencing using 300, 400, 

500, and 600 bases. 

 

Additionally, we ran a test comparing ResNet-101 with and without tuning as a feature extractor. As can be 

seen in Table 12, the performance is similar in both cases. Notice that ResNet-101 is used as a feature extractor 

first. These features are then fed into other networks. In our opinion, the fact that ResNet-101 is a feature extractor 

explains why the performance is so similar.   

Method Species Genus 

The proposed method using ResNet-101 without tuning it 99.15 90.52 

The proposed method using ResNet-101 tuning it 99.21 90.37 

 

Table 12. Comparison of the ResNet-101 feature extractor with and without tuning. 
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In Figure 6, we show the output of our wavelet-based approach for two images of two different classes.  In 

order to make the figure clearer, we use only four submatrices instead of 100 to generate the images.  As can be 

observed, the images are more similar between patterns of the same class than they are between patterns of 

different classes. 

 

 
 
 

Figure 6. Two images obtained by our wavelet-based method (left) and the corresponding RGB images (right).  
The first row is related to two patterns of the species Abax parallelepipedus; the second row is related to two 
patterns of the species Acronicta increta. 
 
 Finally, a word about DNA species classification in general and the presentation of one additional test using 

our ensemble to demonstrate its robustness. Various classifiers have been applied to species classification using 

DNA barcodes, including SVM, naive Bayes (NB), k-nearest neighbor (KNN), multilayer perceptron (MLP), 

decision trees (DT), random forests (RF), and hierarchical supervised models (Meher, Sahu, Gahoi, Tomar, & 

Rao, 2019). RF-based models have effectively predicted fungal species by mapping DNA sequences to numeric 

features, achieving over 85% accuracy, a performance that improves with additional reference data (Meher et al., 

2019). For plant classification, supervised learning algorithms applied to DNA barcodes (e.g., rbcL gene) achieve 

more than 97% accuracy, closely aligning with NCBI classifications (Rizaa et al., 2023). BayesANT, a Bayesian 

nonparametric classifier, accurately identifies taxa, including unknown species, using Finnish arthropod data 

(Zito, Rigon, & Dunson, 2023).  Molecular inventories, such as those conducted on Lepidoptera in the Cottian 

Alps, highlight DNA barcoding's role in discovering cryptic species and addressing taxonomic discrepancies 

(Huemer & Wieser, 2023). In addition, mini-barcodes (100-300 bp), though shorter than standard barcodes (650 

bp), have proven effective for species identification using supervised learning (Karim & Abid, 2021). A notable 
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deep learning approach, the ESK model, combines Elastic Net-Stacked Autoencoder (EN-SAE) with Kernel 

Density Estimation (KDE), demonstrating high accuracy in classifying fish families (Jin, Yu, Yuan, & Du, 2021). 

Comparative studies of database-based and ML methods suggest combining approaches enhances classification 

accuracy (Tian, Zhang, Zhai, Wang, & Zou, 2024). 

Please note that comparing various DNA barcoding classification methods based on deep learning is not the 

core of this paper; we used the same extraction method as the baseline paper to have a fair comparison with that 

method.  In this way, we can better evaluate the goodness of the classification step.  The core of the paper is to 

motivate the classification part by showing that it does better than the baseline using the same features. 

The results of our experiments justify our argument for combining SVM with a deep learner. We chose SVM 

because it is the most widely used learner in the literature and has a proven track record. Note how, in Table 4, 

the performance of the single network is lower than that of SVM (Table 6). The next logical step was to test an 

ensemble of networks, as presented in Table 5, where the performance of the ensemble of networks compared to 

the standalone network is shown to be higher. At this point, we have different architectures and different methods 

representing a pattern in a manner suitable for training a neural network. Therefore, we tried combining networks 

with various architectures and other techniques to present the pattern, as shown in Table 6. This step allowed for 

a further increase in performance. The last step was to combine the deeplearning ensemble proposed in this paper 

with SVM. This fusion is our suggested method; it is an improvement over SVM in all tested datasets and 

achieves results superior to the baselines presented in previous papers. 

To demonstrate the robustness of our method, we tested the proposed ensembles, using the same 

hyperparameters as before but including another dataset in our tests.    For this demonstration, we ran our 

approach on the beetle dataset proposed in B. Yang et al. (2022). The beetle dataset dataset contains 615 

mitochondrial COI fragments from 123 beetle species belonging to three families (Coccinellidae, Cantharidae, 

Anthribidae) and is available at https://datadryad.org/stash/dataset/doi:10.5061/dryad.zgmsbccc3 (accessed 

12/06/2024). We obtained the same conclusions as those on the previous datasets. As can be seen in Table 13, 

our ensemble improves SVM and SOTA. We wish to stress that our ensemble does not have hyperparameters to 

be set on each dataset, so these results are obtained using the same ensemble across all datasets.  

 
 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.zgmsbccc3
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Method Accuracy 

(B. Yang et al., 2022) 98.1 
SVM 97.9 
Proposed Ensemble 98.4 

Table 13.  Accuracy in the Beetle dataset. 
 

 

Conclusion 

In this study, we explored the training of neural networks using matrices derived from reshaping the original 

feature vectors. Additionally, we presented findings on the performance achieved by fusing different neural 

network topologies with SVM. Our research contributes to this field by delving into various network 

topologies and assessing the effectiveness of combining diverse classifiers to construct heterogeneous 

ensembles. 

 The key innovations we introduced in this work are the following: 1) we introduced a novel approach 

for constructing CNN ensembles by employing different mother wavelets for vector-to-matrix 

transformation; 2) we demonstrated the superior performance of the proposed approach by comparing 

ensembles with Support Vector Machines (SVM); and 3) we proposed an ensemble based on three 

components (SVM, CNN and Transformers) that outperforms both previous SOTA and SVM. 

The disadvantage of this approach is that ensembles require more computational power than standalone 

methods.  However, this power demand, as we have shown, is easy to satisfy given the computational power of 

current GPUs. 

 In forthcoming research, we intend to augment our analysis by incorporating new datasets to enhance 

the generalization of our method. We also plan to evaluate alternative techniques proposed in the literature 

for generating suitable matrices for CNN training. Future directions also include new methods for 

describing the DNA barcode and including the image of each insect, as well as new approaches for rejecting 

patterns that do not have a species label. Finally, we will work on developing distillation and continuous 

learning approaches for our system to facilitate edge computing and the addition of many new classes. 

Continual learning is necessary to avoid the catastrophic forgetting problem. 
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