
Analysis of Virus Textures in Transmission 

Electron Microscopy Images 

Loris NANNI
a,1

, Michelangelo PACI
 b,c

, Florentino Luciano CAETANO DOS 

SANTOS
 b,c

, Sheryl BRAHNAM
 d

, and Jari HYTTINEN
b,c 

a

 DEI, University of Padua, Padua, Italy 

b

 ELT, Tampere University of Technology, Korkeakoulunkatu, Finland 

c

 BioMediTech, Biokatu, Finland 

d

 Missouri State University, Springfield, MO, USA 

Abstract. In this paper we propose an ensemble of texture descriptors for 

analyzing virus textures in transmission electron microscopy images. Specifically, 

we present several novel multi-quinary (MQ) codings of local binary pattern (LBP) 

variants: the MQ version of the dense LBP, the MQ version of the rotation 

invariant co-occurrence among adjacent LBPs, and the MQ version of the LBP 

histogram Fourier. To reduce computation time as well as to improve performance, 

a feature selection approach is utilized to select the thresholds used in the MQ 

approaches. In addition, we propose new variants of descriptors where two 

histograms, instead of the standard one histogram, are produced for each descriptor. 

The two histograms (one for edge pixels and the other for non-edge pixels) are 

calculated for training two different SVMs, whose results are then combined by 

sum rule. We show that a bag of features approach works well with this problem. 

Our experiments, using a publicly available dataset of 1500 images with 15 classes 

and same protocol as in previous works, demonstrate the superiority of our new 

proposed ensemble of texture descriptors. The MATLAB code of our approach is 

available at https://www.dei.unipd.it/node/2357. 

Keywords. texture descriptors, feature selection, multi-quinary coding, local 

binary patterns, ensemble of descriptors 

1 Introduction 

Transmission Electron Microscopy (TEM) (in particular, negative staining TEM) is 

considered the preferred technique for virus detection and identification, especially for 

unknown agents [4]. TEM is chosen despite high maintenance costs and the level of 

expertise required for manual inspection of images. A fundamental approach for 

characterizing viruses is to visualize their physical structure. Since TEM can be 

performed without any a priori knowledge of the pathogens present in a sample, it is 

not dependent on any organism-specific reagent [7]. This allows a broader examination 

of the sample than is available with other diagnostic tools such as detection of antigens 

or molecular diagnostic techniques.  

In general viruses are classified on the basis of their morphology, chemical 

composition, and mode of replication. TEM analysis offers important morphological 
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information about size and shape (such as whether a virus is icosahedral, helical, 

complex, or even morphologically non-descriptive [6]). Size and shape, however, are 

not qualities that in themselves are sufficient for confirming the identification of a virus. 

TEM also provides important detailed texture information, which can be exploited 

using modern texture analysis techniques [13], thereby providing the opportunity of 

automating TEM virus image classification. Automation of virus classification using 

TEM images is highly desirable because it would greatly reduce costs as well as the 

intra-/inter-operator variability of human expert assessments. 

In the last two decades, there has been a resurgence of interest in machine vision 

on the topic of image texture. In the 1970s texture classification methods were focused 

primarily on the statistical analysis of images. Some important methods exploiting this 

approach include those based on the co-occurrence matrix [10] and filtering [22]. At 

the turn of the century, Ojala et al. [17] proposed a Local Binary Pattern (LBP) 

histogram for rotation invariant texture classification. LBP (and its variants) is a simple 

and efficient operator for describing the local image pattern and has achieved 

impressive classification results on many machine vision benchmark datasets, 

including those for virus image classification [13] and protein subcellular localization 

[19]. Moreover, several systems using LBP have been applied in real-world 

applications (see, for instance, [11] and [27]). In the last decade, LBP has distinguished 

itself from other texture descriptors by its simplicity, effectiveness, and robustness in 

detecting textural and structural information, becoming today one of the most widely 

researched methods for textual analysis. 

Despite recent advances in image texture analysis, only a handful of papers have 

examined machine analysis of virus textures in TEM images. Discrimination of four 

icosahedral viruses are reported in [14], using ring filters in the Fourier power spectrum, 

and in [18], using higher order spectral features. In [23] a radial density profile (RDP) 

is applied to TEM images of cell sections to discriminate intensity variations between 

three maturation stages of human cytomegalovirus capsids. In [13] an ensemble is 

proposed that combines LBP and RDP to discriminate fifteen virus types, and in [15] 

an ensemble is proposed that combines several texture descriptors. 

As in [15], we present an ensemble that combines several texture descriptors to 

classify TEM virus images. Several advancements, however, are introduced in this 

work: 

• For three methods, we test for the first time their multi-quinary (MQ) coding 

versions [19]. The sequential forward floating selection (SFFS) [20] method is 

used to select a set of optimal parameters for building the MQ versions. The 

selection is useful for reducing computation time and for improving 

performance;  

• We couple our texture descriptors with the idea proposed in [1] and applied to 

LBP and LTP. Instead of calculating a single histogram for each descriptor, 

we calculate two histograms: one for edge pixels and the other for non-edge 

pixels. Two different SVMs are then trained, one for each of the two 

histograms. Results are combined by sum rule; 

• We show that a bag of feature approach, based on a perturbation technique for 

improving the performance, works well on this problem; 

• We present a powerful ensemble for solving the virus image classification 

problem that is based on the novel approaches proposed in this paper and on 

methods reported in our previous work. 
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This paper is organized as follows. In section 2 we illustrate the descriptors used in 

our ensembles. In section 3 we present the results using our system on a publicly 

available dataset of 1500 images grouped into 15 different virus types 

(http://www.cb.uu.se/~gustaf/virustexture/index.html). We aim to show how our 

ensemble performs compared to previous approaches where the same dataset is used 

for assessing performance. In section 4 we conclude by also offering a few comments 

on results obtained in previous reports using the same dataset. Finally, we suggest 

possible future research lines of our approach. 

2. Proposed Approaches 

In this section we describe the following: the multi-quinary coding method we apply to 

a set of descriptors, the edge-based dual histogram idea, and the proposed bag of 

feature approach used in our experiments. 

2.1.  Multi quinary coding (MQ) 

In this work we expand our previous efforts of applying multi-quinary coding (MQ) to 

descriptors by applying it to several local binary pattern (LBP) variants. In particular, 

we report the performance obtained by the following: 

• MQ version of the dense LBP (DLBP) [26]. In section 3, MDLB is the label 

used for the multi-quinary coding of DLB;  

• MQ version of the rotation invariant co-occurrence among adjacent LBPs (RI) 

[16]. In section 3, MRI is the label used for the multi-quinary coding of RI;  

• MQ version of the LBP histogram Fourier (LHF) [2], In section 3, MLHF is 

the label used for the multi-quinary coding of LHF 

To reduce computation time and to improve performance, the threshold couples 

used for the quinary codings are selected using SFFS [20], a feature selection approach 

where each potential feature is given a threshold couple that is then evaluated. In this 

way, we select the classifiers (each classifier is trained using a given threshold couple) 

to be combined by running SFFS with an objective function that minimizes the error 

rate of the sum rule of the classifiers trained using the selected threshold couple 

(evaluated using a 5-fold cross validation method on the training data). 

The idea of quinary coding for LBP is proposed in [19], where it is applied to the 

canonical LBP operator [17], which assigns a binary label to each pixel of an image 

based on the local information extracted from a circular neighborhood of P pixels and 

radius R according to the following equation: 

 

     (1) 

                      

where 
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Quinary coding is applied to LBP by introducing into the binary coding s(x) two 

more thresholds (τ
1
, τ

2
), as follows: 

 

                                                                  (2) 

 

To reduce the verbosity of the quinary encoded labels assigned to each pixel of the 

image, the quinary labels are split into four sets of binary patterns, according to the 

binary function b
c
(x), c∈{-2,-1, 1,2}: 

 

                                                                                          (3)  

 

These binary sets b
c
 are then used for extracting histograms (as in standard tested 

descriptors for LBP and LHF, etc.). The four histograms are then concatenated for 

training a SVM. 

In our experiments, we have used more couples of thresholds than  the standards 

reported in [19]. We chose sets of threshold couples according to 

τ
1
={1,3,5,7,9,11,13,15} and τ

2
={τ

1
+2, …, 19}. A subset of threshold couples is then 

selected by SFFS, as described above using the training data. 

2.2. Edge (ED) 

LBP Edge [1] represents an improvement of the LBP descriptor. It is based on the 

evidence that when observers stare at natural images, the most likely fixated locations 

are the high spatial frequency edges [3]. 

The original LBP Edge descriptor is obtained as follows: 

1. Apply the canonical LBP to an image I to get the LBP Image (LBPI); 

2. Detect edges in I using the Sobel edge detector. This results in 2 maps: the 

edge map (E) and the non-edge map (NE); 

3. Compute two histograms, H_E and H_NE, by combining LBPI with E and 

LBPI with NE, respectively (see [1] for details); 

4. Concatenate H_E and H_NE into one final histogram (the feature vector)��

������ [ ],

E E NE NE

H w H w H= × × , using the empirically determined weights 

w
E
 and w

NE
, where 

E NE

w w>  expresses the greater visual attention of the 

viewer on edge regions than in non-edge regions� 

In [1], this idea is coupled with LBP and its ternary version, LTP. Here we couple 

their idea with more descriptors (see section 3 for details). Moreover, the two 

histograms H_E and H_NE are not combined into one feature vector but rather are used 

to train two different SVMs that are then combined by sum rule. 
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2.3. Bag of features approach (BOF) 

In this paper we proposed a bag of feature approach based on perturbation techniques 

for building an ensemble of codebooks for improving performance. Due to lack of 

space, we do not describe the basic idea of bag of features, but refer the reader to [12] 

or [28] for more details. 

In our experiments, we use a grid space approach, where each image is divided 

into overlapping subwindows. The size st of the subwindows is specified as a 

percentage ps of the original image taken at fixed steps, such that st = min(ps×l, 

ps×h)/2, where l×h is the size of the original image. In our final version, ps=12.5%.  

We perform different projections, retaining different training subsets for building 

different projection matrices. For each projection matrix, a different clustering is 

performed and a different vocabulary is built and used for training a SVM.  

A set of 50000 subwindows are randomly extracted from the training set 

(considering the different classes) and used to construct the principal component 

analysis (PCA) matrix. This step is iterated several times (five times retaining 99% of 

the variance, five times retaining 98% of the variance, and five times retaining 99.9% 

of the variance); for each iteration, a different vocabulary is created and a different 

SVM is trained. The results of the 15 SVMs are then combined by sum rule. 

A different set of codebooks is created for each class of the dataset: for each 50 

images of each class, a codebook is built by k-means clustering, with k randomly 

selected between 10 and 40 in order to increase the diversity among the codebooks 

built in the different iterations. The final vocabulary is obtained by concatenating the 

codebooks over all classes. Each subwindow is assigned to one element of the 

vocabulary according to the minimum Euclidean distance criterion (for further details, 

see the MATLAB code available at https://www.dei.unipd.it/node/2357). 

3. Experimental Results 

The "object scale" virus dataset tested in [13] (available at http://www.cb.uu.se/~gustaf/ 

virustexture/index.html) is used for assessing the performance of our system. This 

dataset contains 1500 images of 15 virus types. In our experiments, we used the same 

10-fold cross validation testing protocol applied in [13] and in our previous work [15] 

(the indices used in the 10-fold cross-validation procedure are available at 

http://www.cb.uu.se/~gustaf/virustexture/index.html). 

For comparison purposes, table 1, presents the results of the most interesting 

methods reported in our previous work
2,3 

[15]: 

• NewH, a method based on the co-occurrence matrix, for details see [15]; 

• LBP, standard local binary pattern; 

• LTP, standard local ternary pattern; 

• MLQP, standard multithreshold local quinary pattern [19]; 

• PLB, pyramid LBP [21]; 
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• PLQ, the variant of PLB where the quinary coding is used instead of the 

standard binary coding; 

• NTB, noise tolerant LBP [5]; 

• NTQ, the variant of NTB where the quinary coding is used instead of the 

standard binary coding; 

• DLB, discriminative LBP [8]; 

• DLQ, the variant of DLB where the quinary coding is used instead of the 

standard binary coding; 

• LCP, local configuration pattern [9]; 

• MLC, the variant of LCP where the quinary coding is used instead of the 

standard binary coding; 

• Morph, the method proposed in [24] (with the exclusion of the Haralick 

features [15]); 

• FRDP [13], the best performing method in the “object scale dataset” (i.e. the 

same used in this work) reported in [13]. We use the original code shared by 

the authors coupled with SVM. 

• FUSION, fusion by sum rule among NewH, MLC, Morph and FRDP (the best 

4 methods, each belonging to a different type of descriptors). 

 

 

Table 1. Performances obtained by the methods reported in [15] (note: we report the mean accuracy among 

the classes and not the median as in [13]. 

LBP LTP MLQP PLB PLQ NTB NTQ Fusion 

57.6 58.5 70.0 64.0 70.1 49.9 68.5 80.7 

DLB DLQ LCP MLC NewH Morph FRDP 

55.3 71.8 62.7 73.3 71.7 71.7 70.0 

 

In table 2, we report the most interesting results obtained coupling the idea of LBP 

Edge with several descriptors. It is interesting to note that LBP Edge improves the 

performance of all the tested descriptors. In each cell of table 2 two values are reported:  

first the standard descriptor accuracy and second the accuracy obtained coupling the 

descriptor with the LBP Edge idea. In table 2 we label the descriptor coupled with LBP 

Edge as X_ED, where X is the short name of the descriptor (e.g. LBP_ED). 

Notice that in this work, the uniform mapping is used and the descriptors are 

extracted considering the (P=8, R=1) and (P=16, R=2) neighborhoods for LBP, LTP, 

LHF, and DLBP. Moreover, it is important to note that we did not use the masks 

available at http://www.cb.uu.se/~gustaf/virustexture/index.html for extracting the 

foreground; rather the entire image is used for extracting the features. For this reason, 

LBP and LTP obtain a performance that differs from that reported in our previous work. 

 

Table 2. Accuracy obtained by combining the LBP Edge idea with several descriptors. 

LHF LBP LTP DLBP RI LPQ 

59.7/64.5 58.1/61.4 63.2/65.1 70.1/71.6 79.6/79.7 63.3/69.3 
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In table 3 we report the performance obtained by the BOF approach combined with 

different descriptors. Due to computation time issues, we tested BOF coupled with only 

four different descriptors: LHF, LBP, LPQ and DLBP. In each cell of table 3 two 

values are reported. The first is the accuracy obtained when only a single vocabulary is 

used (i.e., only the first iteration of the system detailed in section 2.3). The second is 

the accuracy obtained using the ensemble of 15 SVMs as detailed in section 2.3. The 

method named BF in table 3 is the fusion by sum rule of the four BOF approaches. It is 

clear that BF combined with different descriptors outperforms BOF based on a single 

descriptor. 

 

Table 3. Performance obtained using the BOF approach. 

BOF LHF BOF LBP BOF LTP BOF DLBP BF 

47.5/48.8 53.3/57.8 51.3/55.3 61.3/61.4 63.0/69.0 

 

 

In table 4 we report the performance of the MQ variant proposed in this paper. 

Moreover, we report the performance of the following: 

• ME: the shape- and appearance-based descriptor proposed in [25]; 

• NewF: the fusion
4

 of the best approaches by sum rule of BF + MDLB + MRI 

+ ME + NewH + MLC + Morph + FRDP + DLBP_ED + RI_ED + LPQ_ED. 

 

Table 4. Comparison among the MQ based methods and the novel ensemble. 

LHF MLHF DLBP MDLB RI MRI ME NewF 

59.7 63.5 70.1 70.8 79.6/ 77.6 66.7 85.7 

The results reported in this paper differ from those reported in our previous work: 

MQ does not prove to be very effective as it does not improve the performance of RI 

and is only marginally useful in LHF and DLBP. However, the proposed new 

ensemble NewF works best: it is simply built by combining the most performing 

descriptors according to the sum rule. In building the ensemble, it should be noted that 

to avoid overfitting in the dataset we did not use an optimization algorithm. NewF 

obtains a mean accuracy of 85.7% and a median accuracy of 86.0% outperforming all 

previous works based on the same “object scale" dataset. For comparison, our best 

ensemble used in [15] obtained a mean accuracy of 80.7% only. 

4. Conclusion  

In this work we expand our previous study on virus image classification by exploring 

novel variants of state-of-the-art descriptors. We show that fusion by simple sum rule 

among the best approaches obtains the best reported performance on the “object scale” 

dataset, beating the performance obtained in [13] and [15] (we used the same 10-fold 

cross validation protocol on the “object scale” dataset used in the original paper). 
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Whereas a mean accuracy of 73.8%, along with a median accuracy of 79.0%, is 

reported in [13] (as provided in a personal communication with the authors), the 

ensemble we propose in this paper obtains a mean accuracy of 85.7% and a median 

accuracy of 86.0%. 

The best result reported in [13] is a median accuracy of 87% when descriptors 

obtained from both the “fixed scale" (which is not publicly available) and “object 

scale" datasets are combined (see [13] for details). In this work we obtain a similar 

performance using the “object scale" dataset only. 

In conclusion, the proposed ensemble provides high performances in the “object 

scale” dataset by exploiting: (i) state of art texture descriptors, (ii) the edge idea, i.e. 

taking particular advantage of the edge pixels in the images by extracting two 

histograms and (iii) the BOF approach. In the future, we plan on testing the proposed 

system and the proposed variants based on MQ coding and LBP edge on other 

applications with large datasets. 
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